
CS 6841 - Assignment 1 TODO: Name, TODO: Roll

1. (10 points) (How good is greedy for Vertex Cover) This will drive down the reason
we study other algorithms for set cover even though in general we know that greedy is
optimal. There could be a large family of instances which have structure where we can
outperform greedy.

(a) (10 points) Construct an example where the greedy algorithm has an approxima-
tion ratio of Ω(log n) for the vertex cover problem where there are n vertices in the
graph.

Solution:

Proof. 1 + 1 = 2.

2. (25 points) (Finishing the Set Cover Rounding Proof) We’d left the final parts of
the proof as homework. You’ll now complete this.

(a) (10 points) We showed the following two properties which our rounding algorithm
satisfies (if we repeated the randomized rounding experiment for T = 2 lnn steps:
(i) the expected cost is 2 lnnOpt where Opt is the cost of the optimal LP fractional
solution, and (ii) the probability with which all elements are covered is at least
1 − 1

n
. Show that there with some constant probability, we will find a solution

which has cost at most O(1) lnn and also covers all the elements. (Hint: Use
Markov’s inequality and the union bound)

Solution:

Proof. 1 + 1 = 2.

(b) (10 points) Now if instead of running our rounding T = 2 lnn times, if we had
run it a different number (say, lnn + C ln lnn) of times. Then try to optimize
the parameters and show that we will compute, with some non-trivial probability
of Ω( 1

lnn
), a solution where the cost is (lnn + O(ln lnn))Opt and all elements are

covered.

Solution:

Proof. 1 + 1 = 2.

(c) (5 points) Finally boost the success probability above by repeating this algorithm
some number of times. Roughly how many times do you need to run to get proba-
bility of failure to be e−n?

Solution:

Proof. 1 + 1 = 2.



3. (20 points) (Integrality Gap for Robust Min-Sum-Set-Cover) Consider the gen-
eralization of min-sum-set-cover where the cover time of an element is defined to be the
first time when the element is covered K times, for a given parameter K. We will now
show that the natural LP has a large integrality gap for this instance.

(a) (10 points) Write the natural LP for this problem.

Solution:

Proof. 1 + 1 = 2.

(b) (10 points) Consider the following instance, and show that it has a large integrality
gap. The universe of elements U = {e1, e2, . . . , el}. The sets are S = {S1 ≡
{e1, e2, . . . , el}, S2 ≡ {e1, e2, . . . , el}, . . . , Sn ≡ {e1, e2, . . . , el}, Sn+1 = {e1}, Sn+2 =
{e2}, . . . , Sn+l = {el}}. Suppose the coverage requirement K = (n + 1). Show that
we can set values of l and n so that the LP solution and integral solutions have a
large gap. For this, you need to exhibit some fractional solution of low cost and
show that all integral solutions have much larger cost.

Solution:

Proof. 1 + 1 = 2.

4. (30 points) (Structure of a fractional optimum for the vertex cover LP relax-
ation) Recall in class that we wrote down an integer linear program of two variable
inequalities (one per edge) such that a feasible 0-1 solution is a vertex cover. Let VC
denote this integer linear program, and let LPVC denote the vertex relaxation. Let x∗

an optimum solution to LPVC and let V0, V1, Vh be the 3 vertex sets of the graph as
discussed in class.

(a) (5 points) Show that N(V0) = V1.

Solution:

Proof. 1 + 1 = 2.

(b) (10 points) Show that the value of x∗ is |V1| − |V0|+ |Vh|
2

.

Solution:

Proof. 1 + 1 = 2.

(c) (5 points) Show that all the corner points of the polytope are half-integral.

Solution:
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Proof. 1 + 1 = 2.

(d) (10 points) Use the above arguments to compute the minimum vertex cover of a
tree.

Solution:

Proof. 1 + 1 = 2.

Page 3


