1. (30 points) (Finishing the Arborescence proofs) You will complete the formal arguments for the proofs we only sketched in class.
(a) (5 points) Recap the primal-dual algorithm (with reverse delete) for min-cost arborescence.

## Solution:

Proof. $1+1=2$.
(b) (10 points) In the iterative step, recall that we find a minimal strongly connected component $S$ which has incoming arcs in the current solution. If such a component exists and does not contain the root $r$, then we raise its dual variable $y_{S}$ and proceed. Show that if we cannot find such a component, then the current solution (before reverse delete) is feasible.

## Solution:

Proof. $1+1=2$.
(c) (15 points) Let $F^{*}$ be the final solution after reverse delete. Then, show that for any variable $y_{S}>0$ (i.e., it has strictly positive contribution) to the dual, then $\left|F^{*} \cap \delta^{-}(S)\right|=1$, i.e., we satisfy the relaxed complementary slackness condition with $\lambda=1$. This should use the property of reverse delete, and also how we choose the minimal strongly connected components at any time to raise the dual.

## Solution:

Proof. $1+1=2$.
2. (15 points) (Gap Example for Local Search) In class, we saw that local search yields a $1 / 2$-approximation for Max- $k$-Coverage. Now you will construct an example where it can be stuck at such a solution which is factor $1 / 2$-off from the optimal.
(a) (15 points) Indeed, we said that if we start with any arbitrary collection of $k$ sets, and keep making swaps as long as we improve the total coverage, we repeat until we stop. Construct an instance of max- $k$-coverage where, if we started off with a bad solution (you can choose this solution), the local search algorithm would not even make one improvement. That is, it stops there. Moreover, if this starting solution only covers $1 / 2$ the number of elements of an optimal solution, then we would have shown a tight bad example for our local search analysis. (Hint: try to construct an instance where all the inequalities we used in our swap-based proof are almost tight. Indeed, if they were sloppy, then we could have done a better analysis).

## Solution:

Proof. $1+1=2$.
3. (10 points) (Connectivity Problem) Consider the following problem: we have a graph $G=(V, E)$, and edges have $\operatorname{cost} c_{e} \geq 0$. Now, we have a set $S$ of senders, and a set $R$ of receivers such that $S \cap R=\emptyset$. The goal is to find a set of edges $F$ with minimum total cost $\sum_{e \in F} c_{e}$ such that each receiver $r \in R$ is connected to at least one sender $s \in S$ (it can be any sender, doesn't matter which).
(a) (10 points) Design a 2-approximation algorithm for this problem. You may reduce it to some problem we've already studied in class.

## Solution:

Proof. $1+1=2$.
4. (20 points) (Some Non-Approximability Problems) We saw in class that the Steiner Tree and Steiner Forest had 2-approximation algorithms. Now we show that a slight change to the problem makes them quite different. Suppose we have a vertex-cost version of the problem. That is, we have a graph $G=(V, E)$ and each vertex has a cost $c_{v} \geq 0$ (and edges have no cost). We are given a root $r \in V$, and a set of terminals $T \subseteq V$. The goal is to find a set of vertices $V^{\prime} \subseteq V$ such that in the sub-graph induced by $V^{\prime}$ (i.e. take vertices in $V^{\prime}$ and all edges between any pair of vertices in $V^{\prime}$ ), the root is connected to every terminal.
(a) (5 points) Show that if we have an $\alpha$-approximation for this problem, then we can use this to design an $\alpha$-approximation for the Steiner Tree problem also.

## Solution:

Proof. $1+1=2$.
(b) (15 points) More interestingly, show that if we have an $\alpha$-approximation for this problem, then we can use this to design an $\alpha$-approximation for the Set Cover problem also. Using this and results mentioned in class, what is the factor of nonapproximability you can prove for this problem?

## Solution:

Proof. $1+1=2$.

