
CS 6841 - Assignment 2 TODO: Name, TODO: Roll

1. (30 points) (Finishing the Arborescence proofs) You will complete the formal ar-
guments for the proofs we only sketched in class.

(a) (5 points) Recap the primal-dual algorithm (with reverse delete) for min-cost ar-
borescence.

Solution:

Proof. 1 + 1 = 2.

(b) (10 points) In the iterative step, recall that we find a minimal strongly connected
component S which has incoming arcs in the current solution. If such a component
exists and does not contain the root r, then we raise its dual variable yS and proceed.
Show that if we cannot find such a component, then the current solution (before
reverse delete) is feasible.

Solution:

Proof. 1 + 1 = 2.

(c) (15 points) Let F ∗ be the final solution after reverse delete. Then, show that for
any variable yS > 0 (i.e., it has strictly positive contribution) to the dual, then
|F ∗ ∩ δ−(S)| = 1, i.e., we satisfy the relaxed complementary slackness condition
with λ = 1. This should use the property of reverse delete, and also how we choose
the minimal strongly connected components at any time to raise the dual.

Solution:

Proof. 1 + 1 = 2.

2. (15 points) (Gap Example for Local Search) In class, we saw that local search yields
a 1/2-approximation for Max-k-Coverage. Now you will construct an example where it
can be stuck at such a solution which is factor 1/2-off from the optimal.

(a) (15 points) Indeed, we said that if we start with any arbitrary collection of k sets,
and keep making swaps as long as we improve the total coverage, we repeat until we
stop. Construct an instance of max-k-coverage where, if we started off with a bad
solution (you can choose this solution), the local search algorithm would not even
make one improvement. That is, it stops there. Moreover, if this starting solution
only covers 1/2 the number of elements of an optimal solution, then we would have
shown a tight bad example for our local search analysis. (Hint: try to construct
an instance where all the inequalities we used in our swap-based proof are almost
tight. Indeed, if they were sloppy, then we could have done a better analysis).

Solution:

Proof. 1 + 1 = 2.

3. (10 points) (Connectivity Problem) Consider the following problem: we have a graph
G = (V,E), and edges have cost ce ≥ 0. Now, we have a set S of senders, and a set R of
receivers such that S ∩R = ∅. The goal is to find a set of edges F with minimum total
cost

∑
e∈F ce such that each receiver r ∈ R is connected to at least one sender s ∈ S (it

can be any sender, doesn’t matter which).

(a) (10 points) Design a 2-approximation algorithm for this problem. You may reduce
it to some problem we’ve already studied in class.

Solution:

Proof. 1 + 1 = 2.

4. (20 points) (Some Non-Approximability Problems) We saw in class that the Steiner
Tree and Steiner Forest had 2-approximation algorithms. Now we show that a slight
change to the problem makes them quite different. Suppose we have a vertex-cost ver-
sion of the problem. That is, we have a graph G = (V,E) and each vertex has a cost
cv ≥ 0 (and edges have no cost). We are given a root r ∈ V , and a set of terminals
T ⊆ V . The goal is to find a set of vertices V ′ ⊆ V such that in the sub-graph induced
by V ′ (i.e. take vertices in V ′ and all edges between any pair of vertices in V ′), the root
is connected to every terminal.

(a) (5 points) Show that if we have an α-approximation for this problem, then we can
use this to design an α-approximation for the Steiner Tree problem also.

Solution:

Proof. 1 + 1 = 2.

(b) (15 points) More interestingly, show that if we have an α-approximation for this
problem, then we can use this to design an α-approximation for the Set Cover
problem also. Using this and results mentioned in class, what is the factor of non-
approximability you can prove for this problem?

Solution:

Proof. 1 + 1 = 2.

Page 2

