CS 6841 - Assignment 2 TODO: Name, TODO: Roll

1. (30 points) (Finishing the Arborescence proofs) You will complete the formal ar-
guments for the proofs we only sketched in class.

(a)

(b)

(5 points) Recap the primal-dual algorithm (with reverse delete) for min-cost ar-
borescence.

Solution:

Proof. 1+ 1= 2. O

(10 points) In the iterative step, recall that we find a minimal strongly connected
component S which has incoming arcs in the current solution. If such a component
exists and does not contain the root r, then we raise its dual variable yg and proceed.
Show that if we cannot find such a component, then the current solution (before
reverse delete) is feasible.

Solution:

Proof. 1+1=2. ]

(15 points) Let F* be the final solution after reverse delete. Then, show that for
any variable ys > 0 (i.e., it has strictly positive contribution) to the dual, then
|F*N 6 (S)| = 1, i.e., we satisfy the relaxed complementary slackness condition
with A = 1. This should use the property of reverse delete, and also how we choose
the minimal strongly connected components at any time to raise the dual.

Solution:

Proof. 1+1=2. O]

2. (15 points) (Gap Example for Local Search) In class, we saw that local search yields
a 1/2-approximation for Max-k-Coverage. Now you will construct an example where it
can be stuck at such a solution which is factor 1/2-off from the optimal.

(a)

(15 points) Indeed, we said that if we start with any arbitrary collection of k sets,
and keep making swaps as long as we improve the total coverage, we repeat until we
stop. Construct an instance of max-k-coverage where, if we started off with a bad
solution (you can choose this solution), the local search algorithm would not even
make one improvement. That is, it stops there. Moreover, if this starting solution
only covers 1/2 the number of elements of an optimal solution, then we would have
shown a tight bad example for our local search analysis. (Hint: try to construct
an instance where all the inequalities we used in our swap-based proof are almost
tight. Indeed, if they were sloppy, then we could have done a better analysis).



Solution:

Proof. 1+1=2. O

3. (10 points) (Connectivity Problem) Consider the following problem: we have a graph
G = (V, E), and edges have cost ¢, > 0. Now, we have a set S of senders, and a set R of
receivers such that SN R = (). The goal is to find a set of edges F' with minimum total
cost ) g Ce such that each receiver r € R is connected to at least one sender s € S (it
can be any sender, doesn’t matter which).

(a) (10 points) Design a 2-approximation algorithm for this problem. You may reduce
it to some problem we’ve already studied in class.

Solution:

Proof. 1+1=2. ]

4. (20 points) (Some Non-Approximability Problems) We saw in class that the Steiner
Tree and Steiner Forest had 2-approximation algorithms. Now we show that a slight
change to the problem makes them quite different. Suppose we have a vertex-cost ver-
sion of the problem. That is, we have a graph G = (V, E) and each vertex has a cost
¢, > 0 (and edges have no cost). We are given a root r € V', and a set of terminals
T C V. The goal is to find a set of vertices V' C V such that in the sub-graph induced
by V' (i.e. take vertices in V' and all edges between any pair of vertices in V’), the root
is connected to every terminal.

(a) (5 points) Show that if we have an a-approximation for this problem, then we can
use this to design an a-approximation for the Steiner Tree problem also.

Solution:

Proof. 1+1=2. O]

(b) (15 points) More interestingly, show that if we have an a-approximation for this
problem, then we can use this to design an a-approximation for the Set Cover
problem also. Using this and results mentioned in class, what is the factor of non-
approximability you can prove for this problem?

Solution:

Proof. 1+1=2. O]
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