
CS 6841 - Assignment 3 TODO: Name, TODO: Roll

1. (40 points) (Fun with Metrics) In this exercise, you will learn how to use metric
embeddings to design algorithms.

(a) (10 points) Show how to solve the k-median problem on line metrics optimally.
That is, given n clients C and m choices for placing the centers F , and a line metric
dL on C∪F , find a subset S ⊆ F such that |S| = k and the cost(C, S) is minimized.
Recall that cost(C, S) =

∑
j∈C dL(j, S), and dL(j, S) = mini∈S dL(j, i).

Solution:

Proof. 1 + 1 = 2.

(b) (10 points) Now assume the following (fake) theorem:
Theorem 1. Given any metric (X, d) where X is a set of n points, and d(·) is a
general metric distance function, we can efficiently find an embedding into a line
metric dL such that for all u 6= v, d(u, v) ≤ dL(u, v) ≤ O(log n)d(u, v).

Using the fake theorem above, devise a O(log n)-approximation to k-median on
general metrics. (Hint: consider the modified instance I ′ = (C ∪ F, dL) and solve
k-median on dL, and output the same solution for the original instance.)

Solution:

Proof. 1 + 1 = 2.

(c) (10 points) In reality the fake theorem is not true as stated above. What is true is
the following theorem:
Theorem 2. Given any metric (X, d) where X is a set of n points, and d(·)
is a distance function, we can efficiently find an embedding into a distribution
D over different line metrics dL1 , dL2 , . . . , dLk

such that for all u 6= v, d(u, v) ≤
EdL∼D [dL(u, v)] ≤ O(log n)d(u, v).

Now, can you extend the same reasoning to devise good approximation algorithms
for k-median? If not, what hurdles do you face? For a hint, see the part below.

Solution:

Proof. 1 + 1 = 2.

(d) (10 points) What happens if you further assume in the theorem (in reality this as-
sumption is not valid, but let us just assume it for the sake of this question) that for
all line metrics dLi

in the support of D and all u 6= v, we have dLi
(u, v) ≥ d(u, v),

and EdL∼D [dL(u, v)] ≤ O(log n)d(u, v). Such embeddings are called embeddings
into a distribution of dominating lines (for any pair u 6= v, the embedding func-
tion always increases the distances, but on expectation, does not increase by more
than a O(log n) factor). Now does it help you devise approximation algorithms?



2. (40 points) (Algorithms for Warehouse Placement) We now look at a modification
of the k-median problem, which we call warehouse placement. Here, we’re given a metric
space with n retail outlets (or clients) denoted by set C, and m possible locations F ,
and a metric d over C ∪F . We want to place k warehouses at a subset S ⊆ F such that
maxj∈C d(j, S) is minimized. Notice that if the max is replaced by

∑
, then we will get

back the k-median problem.

(a) (10 points) Show that the problem does not admit any (3− ε)-approximation algo-
rithm if P 6= NP (Hint: reduce from Max-k-Coverage).

Solution:

Proof. 1 + 1 = 2.

Now analyze the following algorithm for this problem: suppose somehow we know
the value of the optimal solution C∗. Then, build a graph over the clients C with
the following edges: place an edge between j1 ∈ C and j2 ∈ C if and only if
d(j1, j2) ≤ 2C∗.

(b) (10 points) Show that the size of any maximal independent set in this graph is at
most k.

Solution:

Proof. 1 + 1 = 2.

(c) (10 points) Show how to use some maximal independent set found to recover a set
S ⊆ F of k locations with a good approximation ratio for the original problem.
What’s the best approximation factor you can get?

Solution:

Proof. 1 + 1 = 2.

(d) (10 points) Show how to dispense the assumption of knowing C∗ by trying all dis-
tance values and enumerating.

Solution:

Proof. 1 + 1 = 2.
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