
CS 6841 - End-Semester TODO: Name, TODO: Roll

Honour Code: No Internet Searches, No collaboration!

1. (15 points) (Grocery Store Packing) You are given n items each with some known
weight 0 ≤ wi ≤ 1, and a bunch of bags. Each bag has a weight tolerance of 1 kg beyond
which it will break. The goal is to put the items into bags to minimize the number of bags
used. Give a simple 2-approximation to this problem, i.e., come up with an algorithm
which uses at most twice the optimal number of bags. Does your approximation ratio
improve if the weight of each item is known to be at most some α < 1.

Solution:

Proof. 1 + 1 = 2.

2. (20 points) (Guessing the Largest Number) Here is a combined question on online
and stochastic algorithms. I (the adversary) have chosen a set U of n distinct real
numbers (arbitrary). But the nice thing is that I reveal them to you in a completely
random permuted form (uniformly out of the n! permutations). Your goal, upon seeing
these numbers in an online manner, is to decide which of them is the largest number of
the set U . For example, when you see the first element, you must either declare it to be
the largest number of U , or move on to the second element. Once you move on, you can
not go back in time and declare some early element to be the largest.

(a) (10 points) Consider the following algorithm: suppose you see the first n/2 num-
bers, and let the maximum among them be v. In the next n/2 numbers, declare
the first one greater than v to be the largest. If there is none, declare the last
element to be the largest element of U . Show that this algorithm works with decent
probability. What lower bound can you prove on the probability with which you
will be correct.

Solution:

Proof. 1 + 1 = 2.

(b) (10 points) If you optimize the threshold of how many numbers you see (instead of
n/2, try c · n for some c), what threshold maximizes the correctness probability?

Solution:

Proof. 1 + 1 = 2.

3. (25 points) (Of Flows and Cuts with Several Origin-Destination pairs) You
should recall the famous max-flow min-cut theorem which ascertains the following beau-
tiful theorem: given a undirected graph G = (V,E) where each edge has unit capacity,
and a source vertex s and sink vertex t, consider the two quantities: Let Fmax denote the



maximum flow which s can send to t while respecting edge capacities; let Cmin denote
the s-t min-cut, i.e., the minimum number of edges crossing any partition of the form
(S, V \ S) where s ∈ S and t ∈ V \ S. Then Fmax = Cmin. In fact, one such proof of this
theorem is by using LP duality. In this question, we will study the same from a more
practical setting.

In this question, there are many origin-destination requests of the form (s1, t1), (s2, t2),
. . . , (sk, tk) where s1 wants to send some flow to t1, s2 wants to send some flow to t2, and
so on. The goal is to maximize the minimum throughput, i.e., send some λ flow from all
si to ti such that λ is maximized.

We now state below, a simple linear program which captures this problem. The set
P(si,ti) is the set of all simple paths from si to ti, i.e., every element p ∈ P(si,ti) is a simple
path from si to ti. Ignore the fact that there are exponentially many variables — we are
not trying to implement this in a computer, we are only using LPs to understand/prove
some very fundamental mathematical properties about flows and cuts in this question.
In fact, this exercise shows how to use algorithmic techniques like LPs and Duality to
show deep mathematical properties.

max λ

s.t
∑

p∈P(si,ti)

fp ≥ λ ∀1 ≤ i ≤ k

∑
i

∑
p∈P(si,ti)

s.t e∈p

fp ≤ 1 ∀e ∈ E

fp ≥ 0 ∀i, ∀p ∈ P(si,ti)

(a) (5 points) Let Fmax then denote the maximum flow, i.e., optimum value of the
above LP. Likewise, analogous to Cmin defined above, we can define a similar cut
value: consider partitioning the graph vertices into disjoint sets S and S. Like

done in class, define the sparsity of this cut as the ratio of |E(S,S|
N(S,S)

where N(S, S) is

the number of origin-destination pairs separated by the cut. Let Cmin denote the
smallest sparsity over all possible cuts. Show that Fmax ≤ Cmin.

Solution:

Proof. 1 + 1 = 2.

(b) (10 points) Consider the following graph in Figure 1, and let the origin-destination
pairs be as follows: s1 = a and t1 = b, s2 = b and t2 = c, s3 = a and t3 = c, s4 = u
and t4 = v. In this example, calculate the sparsest cut (show that no sparsest cut
exists), and also show that Fmax must be strictly smaller than Cmin. This shows
that having more than one O-D pair makes the max flow-min cut theorem false!
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Figure 1: Figure for Gap Example

Solution:

Proof. 1 + 1 = 2.

(c) (10 points) Write the dual of the LP above, and say why it is a natural LP relaxation
of the problem of finding the sparsest cut defined above in part (a).

Solution:

Proof. 1 + 1 = 2.

(d) (10 points) Show that the optimal dual solution can be viewed as a metric d(, ·, )
(like discussed in class) satisfying d(si, ti) ≥ 1 for all si and ti. Using the `1 em-
bedding theorem and ideas discussed in class and in HW4, find a cut of sparsity
at most O(log n) times the LP value of the dual. Using this, show the following
approximate max-flow min-cut theorem: Cmin

O(logn)
≤ Fmax ≤ Cmin. So even though

the equality does not hold, we have used LP-duality and LP-rounding to prove an
approximate equality.
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