
CS 6841 - Assignment 1 TODO: Name, TODO: Roll

1. (15 points) (Designing a Tournament) This question will help you understand the
applications of Chernoff bound and Union bound more, as you’ll deal with tuning pa-
rameters to optimize the efficiency of the system. You’ll also get an understanding of
why NBA tournaments are designed the way they are, with more repeated matches being
played as we get closer to the finals. For example, in the NBA, the early rounds are
best-of-five, and the later rounds become best-of-seven. You will understand why, and
also learn how to design tournaments with n participants, for large n.

Suppose there are n teams, and they are totally ranked. That is, there is a well-defined
best team, second ranked team and so on. It’s just that we (the tournament designer)
don’t know the ranking. Moreover, assume that for any given match between two players,
the better ranked team will win the match with probability p = 0.6, independent of all
other matches between these players and all other players also.

(a) (3 points) Let n be a power of two, and fix an arbitrary tournament tree starting
with n/2 matches, then n/4 matches and so on. That is, initially, team 1 plays
team 2, team 3 plays team 4, and so on (each series is only 1 game). The winners
advance, and pair up and play each other once, and so on until one team remains.
What is the probability that the best team wins the tournament?

Solution:

Proof. 1 + 1 = 2.

(b) (5 points) Now change the tournament to make each series as a best-of-k series.
Using Chernoff bounds, show that if k = Ω(log log n), then the best team winning
the overall tournament with some constant probability, say 0.9? So how many
games have we conducted overall?

Solution:

Proof. 1 + 1 = 2.

(c) (8 points) Can you get better dependence on n if you allow different number of
games in each round: example, try having k1 games in the first series, k2 games
in the next series, etc. and optimize for these values to get a total of O(n) games
which still retains 0.9 probability of the best team winning eventually.

Solution:

Proof. 1 + 1 = 2.

2. (15 points) (Different Algorithms for Weighted Vertex Cover) Here we will an-
alyze different possible algorithms for weighted vertex cover. For each of the following
approximation algorithms for Min-Vertex-Cover with positive vertex weights, prove the
best approximation ratio guarantee that you can.



(a) (2 points) Super Naive: Consider all the edges in some arbitrary order. If the edge
{u, v} being considered is not covered yet, pick whichever of u or v has less weight.

Solution:

Proof. 1 + 1 = 2.

(b) (2 points) Naive: Consider all the edges in some arbitrary order. If the edge {u, v}
being considered is not covered yet, pick both u and v.

Solution:

Proof. 1 + 1 = 2.

(c) (6 points) Randomized: Consider all the edges in some arbitrary order. If the edge
{u, v} being considered is not covered yet, pick u with probability wu/(wu + wv)
and v with the remaining probability. We want to bound the expected cost of our
solution in terms of the optimal cost.

Solution:

Proof. 1 + 1 = 2.

(d) (5 points) Local search: Define two solutions S ⊆ V and S ′ ⊆ V to be neighbors
if S can be obtained from S ′ by adding, deleting, or swapping a vertex. The local
search moves are simple: Start with any solution S ⊆ V ; if you are at some solution
S, move to any neighboring solution S ′ that has less weight. If you are at a local
optimum where all the neighbors have at least as much weight output this local
optimum. (Dont worry about the running time for this algorithm.)

3. (15 points) The Police Station Problem. The problem is as follows: The input is
a positive integer k and a complete undirected graph G with distances d(u, v) on each
edge (u, v). The distances form what is called a metric: that is, d(v, v) = 0 for all v,
d(u, v) = d(v, u)0 for all u 6= v, and d(u,w) ≤ d(u, v) + d(v, w) for all triplets u, v, w.

A valid output is a subset S of at most k vertices. The cost (to be minimized) of a
solution is the maximum distance of any vertex from S; i.e., maxv mins∈S d(v, s). One
can imagine being able to open k police stations, in an attempt to minimize the distance
of everyone in the city to the closest station.

(a) (7 points) (Hardness of Approximation) Show that approximating this problem to
within ratio 2− ε is NP-hard for all ε > 0. (Hint: show that Dominating-Set is NP-
hard by first assuming that vertex cover is NP-hard, and then reduce our problem
to dominating set.)

Page 2



Solution:

Proof. 1 + 1 = 2.

(b) (8 points) Show that the following algorithm achieves a 2-approximation. Pick
any vertex v1 in the graph to begin. Pick a vertex v2 furthest from v1. Pick a
vertex v3 furthest from the set S2 = {v1, v2} that is, v3 is the vertex maximizing
mins∈S2 d(v, s), and so on. In general, pick vj furthest from Sj1 = {v1, v2, ..., vj1}.
Stop when you have k vertices. Show that this is a 2-approximation.

Solution:

Proof. 1 + 1 = 2.

4. (10 points) Fun with Submodularity. In this exercise we will get a better under-
standing of submodular functions.

(a) (5 points) In class we defined submodularity as the definition that f(S ∪ {i}) −
f(S) ≥ f(T ∪ {i}) − f(T ) for all S ⊆ T and i /∈ T . Show that this is the same as
the condition that f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ) for all S, T ⊆ [n].

(b) (5 points) Let Ω = {v1, v2, . . . , vn} be the vertices of an undirected graph. For any
set of vertices S ⊆ Ω let f(S) denote the number of edges e = (u, v) such that
u ∈ S and v ∈ Ω− S. Show that f is submodular.

Solution:

Proof. 1 + 1 = 2.

5. (0 points) Difficulty Level. How difficult was this homework? How much time would
you have spent on these questions?

Solution:

Proof. 1 + 1 = 2.

Page 3


