
CS 6841 - Assignment 4 TODO: Name, TODO: Roll

1. (25 points) Familiarity with Euclidean Norms. In the following exercise, you will
familiarize yourself with Euclidean metrics. For any n points X = {x1,x2, . . . ,xn}

where each xi ∈ Rd, define d(xi,xj) = ‖xi − xj‖p. Here, ‖x‖p =
(∑d

`=1(xl)
p
)1/p

for any

x = (x1, x2, . . . , xd)
ᵀ is any vector in Rd and p ≥ 1.

(a) (5 points) Show that (X, d) is a metric space for any p = 1 and p = 2. In fact, it is
a metric space for all p ≥ 1, but you don’t need to prove this.

Solution:

Proof. 1 + 1 = 2.

(b) (5 points) Consider the 4-point metric space formed by d(1, 2) = 1, d(1, 3) = 2, d(1, 4) =
1, d(2, 3) = 1, d(2, 4) = 2, d(3, 4) = 1. Of course, d(i, i) = 0 and d(i, j) = d(j, i) for
all i, j ∈ {1, 2, 3, 4} hold. Does this embed into `1 metrics? If so, how many dimen-
sions do you need in your embedding?

Solution:

Proof. 1 + 1 = 2.

(c) (10 points) Consider the same 4-point metric space as above. Does this embed into
`2 metrics? If so, how many dimensions do you need in your embedding? Conclude
that `1 metrics do not embed isometrically into `2 metrics.

Solution:

Proof. 1 + 1 = 2.

(d) (5 points) For any vector x, show that ‖x‖2 ≤ ‖x‖1 ≤
√
n ‖x‖2. Using this, show

that any finite `1 metric trivially embeds into an `2 metric with distortion at most√
n.

2. (20 points) Finding the Best Embeddings. Here, we see algorithmic problems in-
volving embeddings. Indeed, given a metric (X, d), we want to see the best possible
embedding into `2 metrics with minimum distortion. Show that this can be formulated
as an SDP.

Solution:

Proof. 1 + 1 = 2.

3. (30 points) Cut Metrics and `1 metrics. Recall that given a graph G = (V,E), a
cut metric δS(·, ·) is defined for S ⊆ V , and is of the form δS(u, v) = 1 if and only if



S ∩ {u, v} = 1, and δS(u, v) = 0 otherwise. Also recall that an `1 metric associates a
vector f(u) ∈ Rd for all u ∈ V .

(a) (10 points) Suppose the `1 metric is in 1 dimension, i.e., it is a line. Then show
that you can obtain weights wS ≥ 0 for all S ⊆ V such that, for all u ∈ V, v ∈ V ,
the distance ‖f(u)− f(v)‖1 can be expressed as

∑
S⊆V wSδS(u, v). (Hint: consider

the line embedding and assign non-zero weights only to the subsets which arise as
prefixes on this line.)

Solution:

Proof. 1 + 1 = 2.

(b) (5 points) Extend the above proof for an `1 embedding f in dimension d (Hint: just
separately do this over all the co-ordinates).

Solution:

Proof. 1 + 1 = 2.

(c) (15 points) Using the above idea, show that if we have an `1 metric d(·, ·) which

has sparsity1
∑

(u,v)∈E d(u,v)∑
u∈V,v∈V d(u,v)

= λ, then we can actually find a cut (S, S̄) such that

|E(S,S̄)|
|S||S̄| ≤ λ. This completes the O(log n) approximation to sparsest cut using metric

embeddings discussed in class.

4. (0 points) Difficulty Level. How difficult was this homework? How much time would
you have spent on these questions?

Solution:

Proof. 1 + 1 = 2.

1Here the denominator sums over all pairs (u, v) without double counting any pair. In other words, we
are summing over all the edges of the complete graph Kn.
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