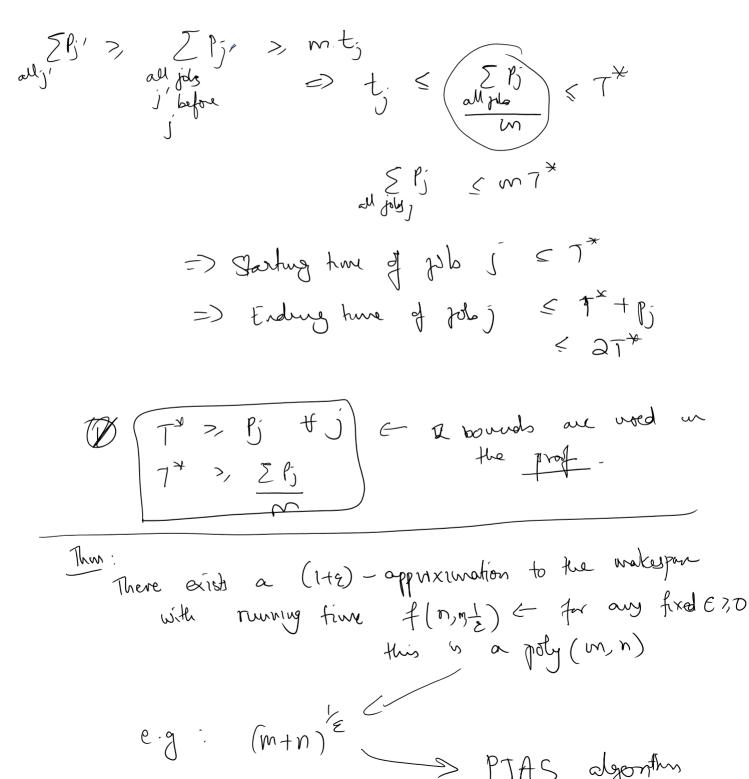
Thursday, March 22, 2018 3:28 PM


-

Machine Scheduling Page 1

$$\frac{1}{1} \frac{1}{1} \frac{1}$$

Machine Scheduling Page 2

lem: if job j starts @ time t, & ends at time t+15, then all machines are busy for the 1st t time confr

e.g.
$$(m+n)$$

PTAS algorithm
Polytime Approximation Scheme
Idea: Dynamic Programming II
Suppose there are only C (constant)
wany type & fels
 n_i to P_{i1} $g = 1$ C types
 n_i to P_{i2} $= 10$
 n_i to P_{i2} $= 10$
 n_i to P_{i2} $= 15$
 n_i to P_{i2} $= 15$
 n_i to P_{i2} $= 17$
 n_i to P_{i2} $= 17$
 $f(n_1', n_2', \dots, n_i') = min # q machines st
 $ura kespon = 7^{*}$
 $f(n_1', n_2', \dots, n_i') = min # q machines st
 $ure can schedule all gold
with load $\in T^{*}$ on all
 $min k load $\in T^{*}$ on all
 $min k = 10$
 $f(n_1, n_2, \dots, n_i') = m$
 $f(n_1, n_2, \dots, n_i') = m$$$$$

Machine Scheduling Page 4