Metric Embeddugs :-

$$
n \text {-points, deotance fuection 'd' }
$$

$$
d(x, x)=0
$$

$$
d(y, x)=d(x, y) \geqslant 0 \quad \forall x, y
$$

$$
d(x, y)+d(y z) \geqslant d(x, z)
$$

Examples of wencic
(1) a Poirits una a plane

Natual Example of won-metric

$$
\begin{aligned}
d\left(p_{i}, p_{j}\right) & =\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2} \\
& \left(\text { Woint satisfy } \Delta^{k} \text { inequalty }\right)
\end{aligned}
$$

$$
\begin{array}{r}
\frac{\text { Gragh Metric }}{G}=(v, E) \text { \& have } w_{e} \geqslant 0 \text { we } \\
\text { weights on edys, } \\
d(u, v)=\begin{array}{r}
\text { shoetest path w.r.t } \\
\text { weights }\left\{w_{e}\right\}
\end{array}
\end{array}
$$

\rightarrow Where do melria appear in algouthom dision?
(\#1) Metrics arix as part of the problen!
(42) Metrics appear as part of the sotution kchirique
what are Mehic Embeddings?
How well do ove family of unetris ambed into anothe family of werres?

Example
d be any n-point metric (X, d)
\ddagger embed $\frac{\text { isometrially }}{1}$ ate l_{∞} mdress
1.
ca a
9.. $\}$
\bigvee^{0} embed 150 metrically ante los and

$$
\begin{gathered}
\left\{p_{1}, p_{2} \ldots, p_{n}\right\}=x \xrightarrow{\downarrow} \underset{\substack{\downarrow \\
p_{1} \text { ins in }}}{\left\{q_{1}^{n}, q_{2} \ldots q_{n}\right\}} \\
d\left(p_{i}, p_{j}\right)
\end{gathered}
$$

$$
\begin{gathered}
a, b c c d e \\
v_{a}(0,3,8,6,1) \\
v_{b}(3,0,9,7,2) \\
v_{c}(8,9,0,2,7) \\
v_{d}(6,7,2,0,5) \\
v_{c}(1,2,7,5,0)
\end{gathered}
$$

Example

$$
\begin{gathered}
v_{a}-v_{d}=(-6,-4,6,6,-4) \\
\left\|v_{a}-v_{d}\right\|=6
\end{gathered}
$$

$\forall \quad p, q$
(A) $\left\|v_{p}-v_{q}\right\|_{\infty} \geqslant d(p, q) \longleftarrow$ look of $p^{\text {th }}$ column of $v_{p} \& v_{q}$.
(B)

$$
\left\|v_{p}-v_{q}\right\|_{\infty} \leqslant d(p, q)
$$

look at any coordinate ' r '

$$
|\underbrace{d(p, r)-d(q, r)}_{\text {follows because }}| \leqslant d(p, q)
$$

$\Delta^{\text {尚 } l_{\text {eq. }} .}\left[\begin{array}{l}d(p, \gamma)-d(q, \gamma) \leq d(p, q) \& \\ d(q, \gamma)-d(p, \gamma) \leq d(p, q)\end{array}\right.$
Provided enough dimensions, l_{∞} metics are all powerful to capture any finite metric II.
(2) How powerful are l_{1} - metrics?

For any metric (x, d), can we cursed it unto vectors st

$$
\begin{aligned}
& \text { vectors st' } \\
& d(x, y) \\
& =11 f(x)-f(y) \|_{1} ? ?
\end{aligned}
$$

SAME QN for l_{2} ?
Can l_{1}-metrics embed ito ${l_{2}}_{2}$-metrics?

$$
l_{2} \quad l_{1} \text { ? }
$$

The:-
\exists anetries (x, d) which doit t ended somencally into l_{1}
J melvin (x, d) which doit embed isometrically into l_{2}.

Next q_{μ}
Can we 'approximately' embed all metrics

Thu
[BOURGAIN]
Any metric can le embedded into an l_{1} metric with distortion $O(\log n)$

$$
\begin{gathered}
\| \\
d(x, y) \leqslant \| \rightarrow \mathbb{R}^{d} \text { st } \\
d f(x)-f(y) \|_{1} \leq O(\log n) d(x, y) \\
\forall x, y \notin X
\end{gathered}
$$

Similarly, any metric also eviseds ute l_{2} with distrotion $O(\log w)$

In both cases, d will be reasonally sind!

$$
\left.1 \approx o\left(\log ^{2} n\right)\right)
$$

Cool property
\rightarrow Onginally needed $\frac{n^{2}}{2}$ entries to curemben the metric I
\rightarrow If we are OK with approximately remember distances, can do it with n.d entries $\approx n \cdot \log ^{2} n$
$L B$: Gait improve on $O(\log n)$ distortion? (ie) \exists metrics st. best posable embedduy unto l_{1} has distortion $Q(\log n)$.

Dimensionality Reduction
Given a points in \mathbb{R}^{d},
\& l_{2} - norm unetric between them.

$$
\begin{aligned}
& v_{1} v_{2}=v_{n} \\
& d\left(v_{i}, v_{j}\right)=\left\|v_{i}-v_{j}\right\|_{2}
\end{aligned}
$$

\& supper d is very very large

Theorem
$\forall \in \geqslant 0, \rightarrow$ a mapping $f: R^{d} \rightarrow R^{2}$

$$
(1-\varepsilon)\left\|v_{i}-v_{j}\right\|_{z_{2}} \leq\left\|f\left(v_{i}\right)-f\left(v_{j}\right)\right\|_{2} \leq(1+\varepsilon)\left\|v_{i}-v_{j}\right\|_{\varepsilon} \mid
$$

where $L=\frac{O(\log n)}{\varepsilon^{2}}$.
\# entries per point
comes down from ' d ' $\rightarrow L=\frac{O(\log n)}{\varepsilon^{2}}$.
Johnson Lindenstrauss Lemma

Bonergins Theorem
Given a metric (x, d) on w points, we can always combed it wto l_{1} with distortion \leqslant $O(\log n)$ in \mathbb{R}^{d} when $d=\theta\left(\log ^{2} n\right)$
(ie)

$$
\begin{aligned}
\exists f: x \rightarrow \mathbb{R}^{d} \text { st } & \\
d(u, v) \leqslant\|f(u)-f(v)\|_{1} & \leq o(\log u) d(u, v) \\
& \forall u, v \in x
\end{aligned}
$$

We'll carefully choose many subsets $S \subseteq X$, \& create one coordinate in the embedding

$$
\begin{aligned}
& f_{s}(v)=d(v, s) \\
& f(v)=\left(f_{s_{1}}(v), f_{s_{2}}(v)\right. \\
& d(v, s)=\min _{u \in s} d(u, v)
\end{aligned}
$$

$$
f(v)=\left(f_{s_{1}}(v), f_{s_{2}}(v), \ldots f_{s_{\theta}}(v)\right)
$$

Claim (1)

$$
\|f(u)-f(v)\|_{1} \leqslant D d(u, v)
$$

Root: $\forall S \subseteq x$

$$
\begin{aligned}
& \forall S \subseteq X \\
& |d(u, s)-d(v, s)| \leq d(u, v) \\
& \rightleftharpoons d(u, s)-d(v, s) \leq d(u, v) \quad \& \\
& d(v, s)-d(u, s) \leq d(u, v)
\end{aligned}
$$

$$
\text { well ut } D=\theta\left(\log ^{2} n\right)
$$

Theorem (2)
We can carefully chook $s_{1}, S_{2}, \ldots S_{D} s t$

$$
\|f(u)-f(v)\|_{1}>\Omega(\log n) \cdot d(u, v)
$$

How to choose $S_{1}, S_{2}, \ldots, S_{D}$?
Idea/Intuition

Idea/Intuition

$\forall_{r \rightarrow 0}^{u} \epsilon^{x}, B(u, r)=\{v: d(u, v) \leqslant r\}$
Concur $B\left(u, r_{u}\right)$ \& $B\left(v, \gamma_{v}\right)$ st $f_{s}(u) \leqslant r_{u}$

$$
\gamma_{v}=\gamma_{u}+\Delta
$$

$\&$ suppon $S \subseteq x$ s st $S \cap B\left(u, r_{\mu}\right) \neq \phi^{\text {n }}$
$\& S \cap B\left(v, r_{v}\right)=\phi \Rightarrow f_{s}(v) \geqslant r_{v} \quad=r_{u}+\Delta$
In this case, 番 $\left|f_{s}(u)-f_{5}(v)\right| \geqslant \Delta$

Alysuthm

$$
\text { For then } i=1,2, \ldots \log ^{100}(\log)
$$

For $\frac{l}{2}=0,1, \ldots \log n$
Add u to S_{l}^{i} wP $\frac{1}{2^{l}}$ indeperalently

$$
\begin{gathered}
\forall v: f_{S_{l}^{i}}(v)=d\left(v, S_{l}^{i}\right) \\
f(u)=\left(\left\{_{S_{l}^{i}}(v)\right\}_{\begin{array}{l}
1 \leq i \leq \theta \log n) \\
0 \leq l \leq \log n
\end{array}}\right.
\end{gathered}
$$

UTS
for each $u \neq v$

$$
\begin{aligned}
& u \neq v \\
& \|f(u)-f(v)\|_{1} \geqslant \Omega(\log n) \cdot d(u, v)
\end{aligned}
$$

For every (u, v),

$$
\left.\gamma_{u}^{l}=\text { radius sit } \mid B(u, v), v_{u}^{l}\right) \mid \approx 2^{l} \text { points in }
$$

Let t be the level at which

$$
\begin{aligned}
& \text { the } 2 \text { balls overlap } \\
& \Rightarrow r_{u}^{t}+r_{v}^{t} \geqslant d(u, v) \text {. } \\
& \text { wOG, let } r_{u} t \geqslant \frac{d(u, v)}{2}
\end{aligned}
$$

$\forall 0$ il <t, well shew the following

$$
\left\|f_{S_{l}}(u)-f_{s_{l}}(v)\right\|_{1} \geqslant 0.1\left(\gamma_{u}^{l}-r_{l}^{l-1}\right)
$$

with probability $\geqslant 0.1$
(1)
call S_{l} good if $\left|f_{5_{l}}(u)-f_{5_{l}}(v)\right| \geqslant \theta_{0} \|\left(r_{u}^{l}-T_{u}^{l-1}\right)$ its bad otherwise.
$E\left[\#\right.$ good sets S_{l} over $\left.i=1,2,109(\log n)\right]$

$$
\left.\begin{array}{l}
i=1,10.1 \times 100 \log n \\
=10 \log n
\end{array}\right\}
$$

Cheruogf bounds
\Rightarrow with probability $\geq 1-\frac{1}{n^{6}}$,
the \#good sets $S_{l} \geqslant 5 \log n$.
For each good set, coordinate value

$$
\begin{aligned}
& \text { coordinate value } \\
& \left|f_{g^{e}}(u)-f_{s}(v)\right| \geqslant 0.1\left(r_{u}^{l}-r_{u}^{l-1}\right)
\end{aligned}
$$

\Rightarrow total coordinate value our all good rets S_{l}

$$
\begin{aligned}
& \text { ingate value owns } \\
& \geqslant 0.5 \log n\left(r_{l}^{l}-r_{u}^{l-1}\right) \text {. }
\end{aligned}
$$

Sum over all $0 \leq l<t$
Halal l_{1} dist $\geqslant 0.5 \operatorname{logn}\left(r_{v}^{t}-v_{v}^{0}\right)$

$$
\geqslant 0<\log n \quad \frac{d(u, v)}{2}
$$

Suffices to show Claim (1)

Call a ut S_{l} good if

$$
\begin{aligned}
& S_{l} \operatorname{good} \text { if } \\
& \left|f_{s_{l}}(u)-f_{s_{l}}(v)\right| \geqslant 0.1\left(r_{u}^{l}-r_{u}^{l-1}\right) \\
& S_{l} \text { vandow }
\end{aligned}
$$

Need to show that picking $S l$ vandowng by including each vertex with pool $\frac{1}{2^{2}}$ er gives a good ut $\omega p \geqslant 0.1$
Note that $\forall l \in[0, t)$

Case (1)

$$
\begin{aligned}
r_{u}^{l}<v_{v}^{l}: \operatorname{cousidor} U_{l} & =\operatorname{Ball}\left(u, r_{u}^{l-1}\right) \\
\& V_{l} & =\operatorname{Ball}\left(v, r_{v}^{l}\right)
\end{aligned}
$$

Suppose S_{l} intersects U_{l} but completely misses

$$
\begin{aligned}
& \Rightarrow \quad d\left(u, S_{l}\right) \leqslant \gamma_{u}^{l-1} \& \\
& d\left(v, S_{l}\right)>r_{v}^{l} \geqslant \gamma_{u}^{l} \\
& \Rightarrow\left\|f_{S_{l}}(u)-f_{S_{l}}(v)\right\|_{1} \geqslant r_{l}^{l}-\gamma_{l}^{l-1}
\end{aligned}
$$

$R\left(S_{l}\right.$ intersects $U_{l} \& S_{l}$ misses $\left.V_{l}\right)$

$$
\begin{aligned}
& \left.U_{l} \& S_{l} \text { misses } V_{l}\right) \\
& =\operatorname{Br}\left(S_{l} \text { misses } V_{l}\right)\left(1-\operatorname{Rr}\left(S_{l} \text { miss } V_{l}\right)\right) \\
& =\left(1-\frac{1}{2^{l}}\right)^{2^{l}}\left[1-\left(1-\frac{1}{2^{l}}\right)^{2^{l-1}}\right] \\
& \approx \frac{1}{e}\left[1-\frac{1}{e}\right]
\end{aligned}
$$

Case (2): $\gamma_{l}^{l} \geq \gamma_{v}^{l}$

$$
-\quad \gamma_{v}^{\ell}
$$

case (20) $\gamma_{v}^{l} \geqslant \frac{\gamma_{d}^{\lambda}+\gamma_{d}^{l-1}}{2}$
Set

$$
\begin{aligned}
& U_{l}=\operatorname{Ball}\left(u, v_{l}^{l-1}\right) \& \\
& V_{l}=\operatorname{Ball}\left(v, r_{v}^{l}\right)
\end{aligned}
$$

we 'l get that if

$$
\begin{aligned}
& e^{\prime \prime \text { get that 'f }} \\
& S_{l} \cap V_{l}=\phi \& S_{l} \cap U_{l} \neq \phi \\
& \left|d\left(u, S_{l}\right)-d\left(v, S_{l}\right)\right| \geqslant \frac{r_{l}^{l}-r_{u}^{l-1}}{2}
\end{aligned}
$$

Case 28

$$
\frac{(2 b)}{\gamma_{v}^{l}} \leqslant \frac{\gamma_{u}^{l}+\gamma_{u}^{1-1}}{2}
$$

In this case, set $U_{l}=\operatorname{Ball}\left(n, r_{n}^{l}\right)$

$$
V_{l}=\operatorname{Bal}\left(v, r_{v}^{\ell}\right)
$$

An same proof to shrur that

$$
\begin{aligned}
& \text { Same poof to show } \\
& \text { if } \quad S_{l} \cap U_{l}=\phi \& S_{l} \cap V_{l} \neq \phi \\
& d\left(v, S_{l}\right)\left(\geqslant, \gamma_{l}^{l}-\gamma_{l}^{l}\right.
\end{aligned}
$$

$$
\begin{array}{r}
\quad S_{l} \cap U_{l}=\phi \& r_{l}^{l} \\
\left|d\left(u, S_{l}\right)-d\left(v, S_{l}\right)\right|
\end{array}
$$

fro of claim 1 QED
Similar poof technique
can be used Jos entering
Frechet Embedding
Every metric can combed into l_{1} with distraction ind 1 -

$$
\leqslant O(\log n)
$$

Every metric can combed wto x_{1}
Bourgain's (ie) $\exists f: x \rightarrow \mathbb{R}^{d}$ st

Theorem

$$
\left.\begin{array}{l}
\text { The res chic can curbed wo r } x_{1} \leqslant O(\log n) \\
\text { Every } \\
\text { (ie) } \exists \quad f: x \rightarrow \mathbb{R}^{d} \text { st } \\
\forall(u, v)
\end{array} \quad d(u, v) \leqslant\|f(u)-f(v)\|_{1} \leqslant O(\log n) \cdot d(u, v)\right]
$$

Sparsest Cut :-
Given a graph $G=(V, E)$,
high level goal: fund a "balanced" partitioning which cuts very few edges.

min-cut ill return a very unbalanced cut

Sparsest Cut :-

$$
\min _{\sin } \frac{|E(S, \bar{S})|}{|S||\bar{S}|}
$$

Very lust problem in real world ! I

Every at naturally defines a metric!! (cat-wehric)
$\forall S: S \subseteq V$,
let $\delta_{s}(u, v)=1$ if $|S \cap\{u, v\}|=1$
$=0$ otherwise

$$
\begin{aligned}
d(u, v) & +d(v, w) \\
& \geqslant \frac{d(u, w)}{.1 \ldots 11}
\end{aligned}
$$

$$
\geqslant d(u, w)
$$

Special type of wen!:
observe

$$
\begin{aligned}
\bar{\prime}|E(s, \bar{s})| & =\sum_{(u, v) \in E} \delta_{s}(u, v) \\
|s||\bar{s}| & =\sum_{\substack{u \in V \\
v \in V}} \delta_{s}(u, v)
\end{aligned}
$$

Sparsest cut equivalent to

$$
\left.\begin{array}{l}
\text { win } \\
\delta: \begin{array}{l}
\delta \text { ssa } \\
\text { cut-metric }
\end{array} \\
\sum_{u, v \in V} \delta(u, v)
\end{array}\right\} \begin{aligned}
& \text { Same fools! } \\
& \text { So still } \\
& \text { Np-hard. }
\end{aligned}
$$

WW
Scout metrics are effectively the
same as l_{1}-metrics $\}$

Bourgains theorem
embed this solution metric $\delta \rightarrow l_{1}$ $\ell_{1} \rightarrow$ cut metres \rightarrow good sol.

Overall Result :-
If the embedding has distortion α, then then
we can get α-approximation to Sparreert. $\Rightarrow O(\log n)$-approximation to sparsest att.

$$
\begin{aligned}
& \text { Solve P4 optimally and get } \delta^{*}
\end{aligned}
$$ Use Bourgain's Theorem \& embed $\delta^{*} \rightarrow \ell_{1}$ with distortion loge.

$$
\begin{aligned}
& \forall(u, v): \delta^{x}(u, v) \leq\|f(u)-f(v)\|_{1} \leq 0(\log u) \delta^{*}(u, v) \\
& \Rightarrow \quad \sum_{(u, v) \in E}\|f(u)-f(u)\|_{1} \leq o(\log v) \sum_{(u, v) \in E} \delta^{*}(u, v) \\
& \& \quad \sum_{u, v \in V}\|f(u)-f(v)\|_{1} \geqslant \sum_{u, v \in U} \delta^{*}(u, v)=1
\end{aligned}
$$

\Rightarrow Sparity of my L_{1} - solution
\Rightarrow Spanity of my L_{1}-solution

$$
\begin{aligned}
& \text { Spanity of my } L_{1} \text {-solution } \\
& =\frac{\sum_{u, v)}^{\sum_{u, v \in V}\|f(u) \cdot f(v)\|_{2}}\|f(u)-f(v)\|_{1}}{\operatorname{sel}^{\text {re to to P2 }} \text { whe cort }}
\end{aligned}
$$

\Rightarrow l've Jound a solv to P2 with cost

$$
\leq U(\log n) \operatorname{Ort}(14)
$$

\Rightarrow Can fund rom to PI wh loot

$$
\leq O(\log n) \operatorname{OPT}(R 4)
$$

Equavalence between $l_{1} \&$ art welúns:

Whe it as

$$
\begin{aligned}
& \text { Inte } t \text { as } \\
& \delta=0.2 \delta_{s_{1}}+0 . \delta S_{2}+0 . \delta \delta S_{3}+5.5 \delta_{s_{4}} \\
& \forall(u, v), \quad \delta(u, v)= \\
&
\end{aligned}
$$

