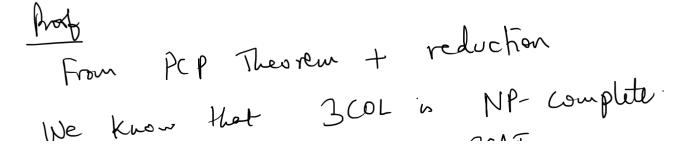
03 May 2021 10:01

8: What is the class NP?
Defin: defined for decision problems

$$e \times is queen a quept, is it
3-coloueABLE?
Here $J = \begin{cases} G: Gib 3-colareable \\ J \end{cases}$
[NP is a clare of languages which admits
a ply-fine non-deterministic buring mochine]
In contrast P is the class of languages
identifiable with deterministic, buring Moding
Typorer-Venfin language
NP is the class of language
 $\forall \chi \in L$, \exists proof $Ti(x)$ of $poly(IXI)$ bits
 $Such$ that
 $V(x, Ti(x)) = 1$$$

. -

,


-

PCPs and Hardness of Approximations

04 May 2021 09:20

Good: Hardness & Approximation of Max3SAT
Prior to peps, was not known if
S Max 3SAT admits a (1-2) - approximation
ft any constant 270.
(12) PTAS ?
Emergence & P43 => PTAS NOT POSSIBLE
There is some fixed 270 ft which it
is NP - hard to approximate Max3SAT
(5) a febre better than (1-2).
Subsequent improviments to PCT Machinery
H 270, it is NP-hard to get a
(
$$\frac{1}{2}$$
+2) - approx to Hax3SAT.
($\frac{1}{2}$ +2) - approx for 270
($\frac{1}{2}$ +3) - approx fo

۰.

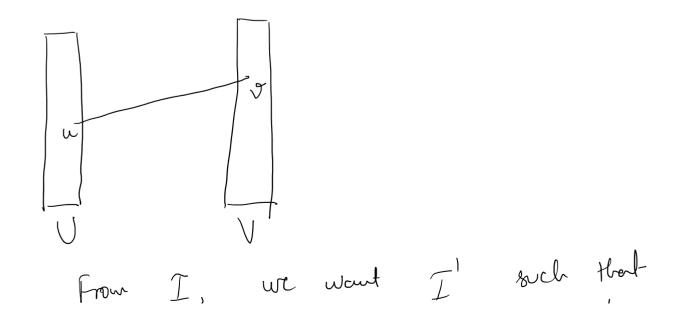
Venfier losses
$$O(logn) - Coins$$

 $C_1 C_2 \cdots C_r$ probe truth to
 $O O O \cdots O = X_1^1 \times Z_2 \cdots \times X_5^2 = S_1$
 $P = (1, 1, 1, 1) = X_{1, 1}^k \times Z_{2, 1}^2 \times X_5^2 = S_1$
 $Verili form a Sent from these truth tables.
We'll convert each prother table to a
Collechan of Claures. (summer #)
For example
 $X_1 X_{10} X_{15} X_{20} = O(tput of V)$
 $O = (1 - 1 - 1) = O$
 $1 = O = 1 = O$
 $0 = O = O$
 $1 = O = 1 = O$
 $0 = O = O$
 $1 = O = 1 = O$
 $0 = O = O$
 $1 = O = 1 = O$
 $0 = O = O$
 $0 = O$
 $0 = O = O$
 $0 = O = O$
 $0 =$$

- -

Label Cover and Max-k-Coverage Hardness ^{05 May 2021} 08:11

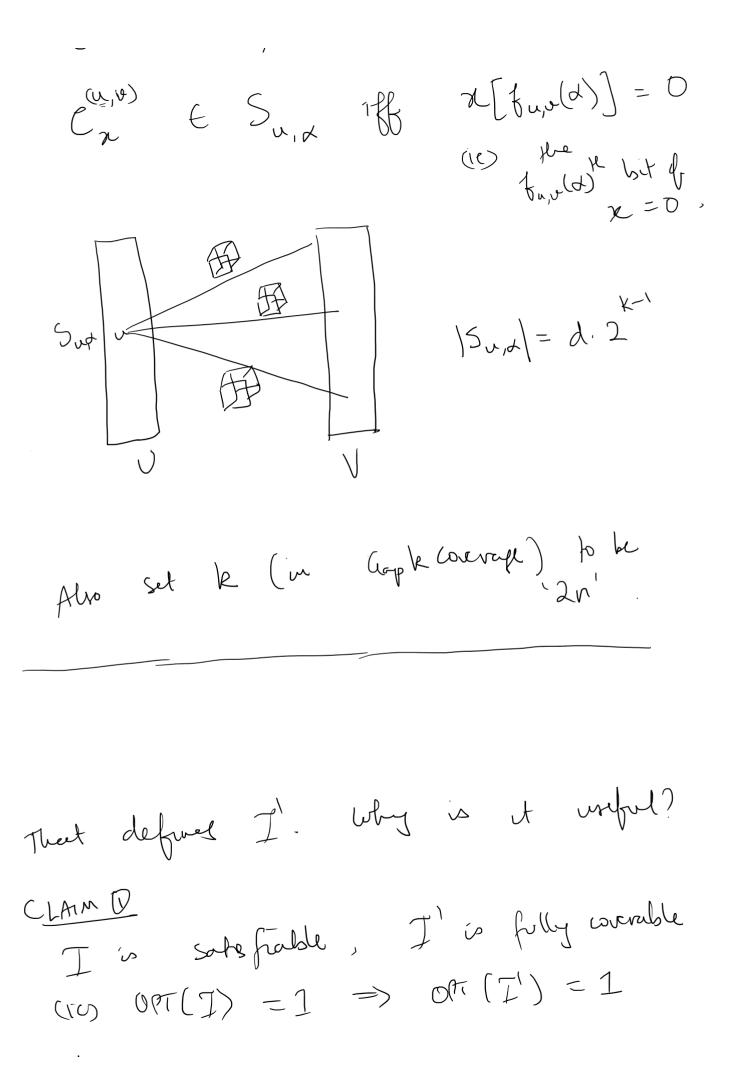
Max Label Cover problem:

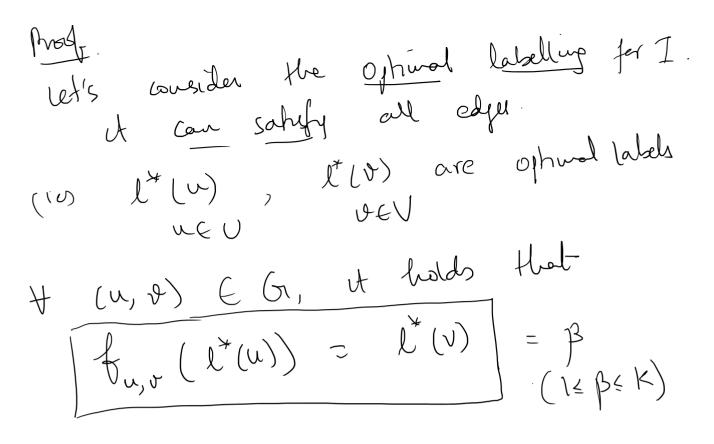

Hardness of Approximation Page 15

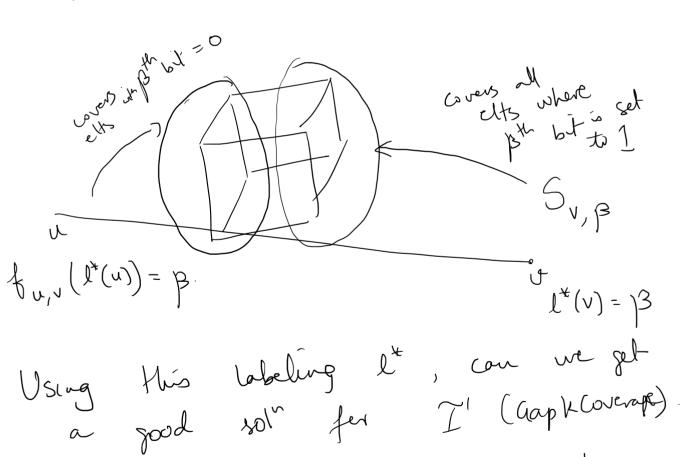
l

Next Lecture
Briefly outline the redu from
Graplebellon ~ Goy Hax Covereft.
to show slightly worse factors of (Zits)
bardwess of Ayyum.
Griven an instance
$$\mathcal{I} = \{G_1 = (U, V, E), \{f_{U,S,V}\}\}$$

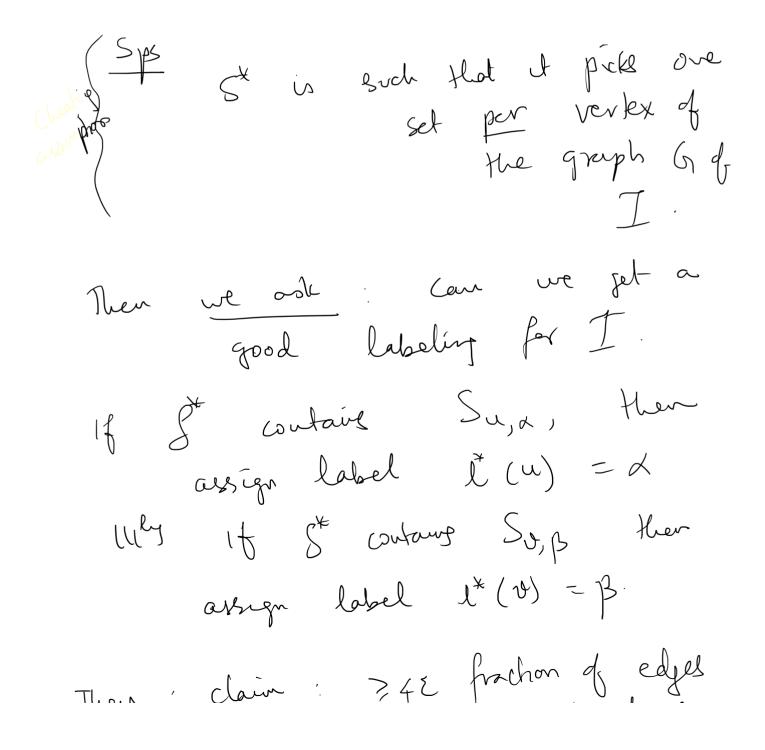
of Graplebellower, problem, we'l
Create at waterice $\mathcal{I}' = \{X, f, k\}$ of


IJ


$$\begin{cases} if \quad opt(I) = 1 \implies opt(I') = 1 \\ opt(I') \leq j \implies opt(I') \leq 3 + 5. \\ Here \quad opt = frachor of \quad flere \\ opt = frachor of \quad opt = frachor of \\ satusfieldedys \quad overed elements. \end{cases}$$



flore a some correspondence between
abiging a label l to u and
fucking a set in I
we'll creall I' such that
there is a set
$$S_{u,x}$$
 for all ucU
and similarly
 $S_{\theta,p}$ for all veV
 $F(k)$
In hold
t sets = [U]·L + [V] K
= [U] (L+K) J "uppt"
Next, well create some soft of association
between edges in I with elements
of I'.
For each edge (u, u) & Gr, we'll crote
a nomber of elements.
 Z^{K} elements corresponding to K-bit
We'll refer to their elements of
 C_{X} "there (u, u) is edge
 R_{V} or k-bit


Hardness of Approximation Page 21

-

reed to bor a sapefied labeltup Any hadly labeled edge can cover only & 34, fraction of elts. But surce St covery ? (3+2) frachon & there must be a good # of Sahefed edyes (?) (1-5) $\frac{2}{3} + 5 \cdot 1 = \frac{2}{3} + \varepsilon$ 7 + 5 = 3 + 2 5 = 42