
CS6841: Advanced Algorithms IIT Madras, Spring 2016
Lecture #1: Properties of LP Optimal Solutions + Machine Scheduling February 24,
2016
Lecturer: Ravishankar Krishnaswamy Scribe: Anand Kumar(CS15M010)

1 Linear Programming

Linear programming is technique for solving the optimization problem. it has equational form

cTx→ minimize

such that
Ax = b

x ≥ 0

where we are given matrix A of size m × n where m is number of constraints and n is number of
variables. where we are given m-vector b = (b1, b2,bm)T and n-vector c = (c1, c2,cn)T .

Find an n-vector x = (x1, x2,xn)T to minimize the

cTx

subject to constraints
Ax = b

x ≥ 0

Linear programming is technique for optimized feasible solution for objective function while fol-
lowing the linear inequalities and linear equalities. The constraints in linear program forms what
is called a polytope . Linear programming algorithm find a point in feasible region, if there exist,
on which the objective function has minimum (or maximum) value.

Solutions of LPs can be categorized into three useful types:

Basic feasible Solution : Suppose the rows of A are linearly independent, i.e., m ≤ n (otherwise
we can delete redundant rows of A).

Now, a Basic Solution is defined as follows: Let S ⊆ [n] be such that columns of AS are linearly
independent and |S| = m. Then AS has size m×m and rank m. Then define

xS = (AS)−1b

, and define x to be equal to xS for the indices in S and 0 for all other indices. All such completed
x’s are called basic solutions. Additionally if xs ≥ 0 the solution is called a basic feasible solution.
Of course, we set

x[n]\S = 0 .

Theorem 1.1. IF polytope is feasible then there exist a basic feasible solution

Theorem 1.2. If linear programming has optimal solution then there exist a feasible solution which
is also a basic feasible solution, means optimal solution is also a basic feasible solution

Proof. Proof was covered in Lecture 08.
1

Now we define the second and third kind of solutions, which take a geometric view point. Defini-
tion 1 : x ∈ P is called a vertex/corner point, where P is the polytope.

iff ∃ c such that (minimization problem)

cTx < cTx′

∀ x′ ∈ P such that x 6= x′

Definition 2 x ∈ P called extreme point if x
′

can not be written as

λx1 + (1− λ)x2

for x1, x2 ∈ P
Definition 3 x ∈ P is basic feasible solotion if ∃ ,S ⊆ [n] , |S| = m AS has rank m

xS = (AS)−1b � 0

x[n]\S = 0

Theorem 1.3. corner ⇐⇒ extreme ⇐⇒ bfs

Proof. 1. x is corner =⇒ x is extreme

lets prove by contradiction suppose x is not extreme

x = λx1 + (1− λ)x2

where x1, x2 ∈ p
cTx = λcTx1 + (1− λ)cTx2

< λcTx+ (1− λ)cTx

= cTx ⇒⇐

2. x is extreme =⇒ x is basic feasible solution

x is extreme =⇒ x is bfs s = j : xj > 0 all entries in x are strictly positive

we need to show that

(a) |s| ≤ m
(b) As has rank m

(c) xs = (As)
−1b

(d) x[n]\s = 0

proving all above Suppose that |s| > m

We know that rank(A)=m which means columns of s are linearly independent −→ ∃ws 6= 0
such that

As.ws = 0

extended to A by setting wj = 0 if j 6∈ s
A.w = 0 w 6= 0

2

x1 = x− εw such that Ax1 = b (Aw = 0)

x2 = x+ εw such that Ax2 = b

if ε is small enough x1 ≥ 0 x2 ≥ 0

same proof if |s| < m but column of As are linearly dependents

|s| ≤ m and As linearly independent ←− extreme

s′ = s∪ some m− |s| column such that rank(s′)= m and |s′| = m

xs = (As)
−1b is the desired basic feasible solution here xs = x,

As has rank m

−→ Xs is the unique slotion to (As)
−1b

3. x is basic feasible solution(bfs) =⇒ x is corner

x is bfs−→ ∃S As id full rank |s| = m xs = (As)
−1b x[n]\s = 0 choose ci if i ∈ [n]\

ci = 0 i ∈ s cTx < cTx′ for x′ ∈ p x′ 6= x , cTx = 0

claim ctx > 0 for all x′ 6= x, x′ ∈ p if Ax′ = b andx′ = 0 implies x′ = x

2 Application- Machine Scheduling

There are n jobs and m machines. We have to find assignment of jobs to machine to minimize the
load maximum load.This problem is similar to graham’s list scheduling algorithm. This machine
scheduling problem NP-hard problem. It is also similar to subset sum problem.

one approach to solve this problem is greedy approach which is 2 approximation. This greedy
algorithm perform worse when there are m jobs of size 1 and one job of size m.where pj is the
processing time of job j .

makespan minimization on unrelated machines: let pi,j processing time of jthjob on ith

machine. Machines are identical if pi,j = pj ∀ i.

xi,j is variable for job j assign to ith machine. Mininise T(makespan) using LP

n∑
i=1

xi,j = 1 ∀j(jobs)

∑
pi,j .xi,j ≤ T

xi,j ≥ 0 ∀i, j

Consider the instance where there are m machines and only one job, and each machine needs a
time m to process the job. The optimal integral solution will assign the job arbitrarily to some
machine, with a makespan of m, while the optimal solution of our LP relaxation is fractional, and
splits the job in equal parts to all the machines, with a makespan of 1; so the integrality gap is at
least m.

let have one job pi,j = pj ∀ i ∈ [machine]

optimal LP, xi,j = 1
m

T =
pj
m

3

by itself LP is not useful for multiplicative comparison .It can not find schedule for makespan ≤ cT ∗
where c is constant

circumvent the LP gap we guess the optimal makespan value T ∗ so the optimization problem
become the feasibility checking problem∑

xi,j = 1 ∀j(jobs)∑
pi,j .xi,j ≤ T ∗ −→

∑
pi.jxi.j + si = T ∗

where ∀xi,j ≥ 0 si ≥ 0

How to round this LP

solve LP , X= optimal solution

X is basic feasible point and extreme point

M=number of constraints= m(machines)+n(jobs)

number of nonzeor xi,j ’s ≤ m+ n

truly fractional variables 0 ≤ xi,j ≤ 1 ≤ m
Let represent job scheduling by the graph G. this graph has an edge(i,j) ifxi,j > 0 . this is bipartide
graph.

Figure 1.1: Bipartide of machine and job

lemma: Any extreme point od LP(T ∗) can have atmost m fractionally assigned jobs.

Proof. Let X be an extreme point of LP(T), and k represents the number of job-machine assigna-
tions in X, i.e. the number of non-zero variables, so by the previous lemma we know that k n +
m. Each job needs at least one such assignation, and it needs more than one assignation iff it is
fractionally assigned. Therefore the number of fractionally assigned jobs in X is k n m

Lemma for any extreme point X claim graph G(X) look like forest without cycle -on cycle.

Proof. Fix an extreme point X . The graph G(X) is bipartite, it has m+n vertices and at most
m+n edges. consider two case .

If G is connected, then G(X) necessarily corresponds to a bipartide tree (one vertices set is having
m vertices other set is having n vertices) with one extra edge means one cycle. so it be come a
tree with one cycle.

4

If G is not connected, then we must prove that every connected component is a tree with at most
one cycle.lets prove by contradiction , lets there is a connected component C which is not a tree
with at most one cycle C’ represent remaining G(x).Then C and C, are two separate scheduling
instances, and the restrictions of X in them, XCand XC′ . but the XC cannot be an extreme point,
because C= G(XC) is connected and not tree with at most one cycle. so it would violate case
1.xC can be written as combination of other feasible points such as XC=λy1 + (1 − λ)y2 where
y1 6= y2. but X could also be explained in terms of other feasible points of original instances such
that X = λ(XC′ + y1) + (1 − λ)(XC′ + y2), which is contradicts the fact that x was an extreme
point . Therefore each components of G is a tree with at most one cycle.

Let X be the optimal extreme point of LP(T ∗). it gives makespan of value ≤ T ∗ ≤ OPT .if We
consider the graph G(X) with many components and each components is tree with atmost one
cycle . Graph is actually contain machine and fractionally assigned jobs, where edge represent job
assigned to machine . all leaves are machine. we just need to find a matching that have all the
jobs. till there are leaves in the graph , pick a leaf add the corresponding edge to the matching ,
and remove from the graph the corresponding job with all its child when their are no more leaves
,graph become either a empty graph or an even cycle.in the end we have perfect matching so we
can find a matching that covers all fractionally assigned jobs.

5

	Linear Programming
	Application- Machine Scheduling

