
CS 6841 - Assignment 1 TODO: Name, TODO: Roll

1. (10 points) (Designing a Tournament) This question will help you understand the
applications of Chernoff bound and Union bound more, as you’ll deal with tuning pa-
rameters to optimize the efficiency of the system. You’ll also get an understanding of
why NBA tournaments are designed the way they are, with more repeated matches being
played as we get closer to the finals. For example, in the NBA, the early rounds are
best-of-five, and the later rounds become best-of-seven. You will understand why, and
also learn how to design tournaments with n participants, for large n.

Suppose there are n teams, and they are totally ranked. That is, there is a well-defined
best team, second ranked team and so on. It’s just that we (the algorithm designer) don’t
know the ranking. Moreover, assume that for any given match between two players, the
better ranked team will win the match with probability p = 1

2
+ δ, independent of all

other matches between these players and all other players also. Here δ is a small positive
constant.

(a) (2 points) Let n be a power of two, and fix an arbitrary tournament tree starting
with n/2 matches, then n/4 matches and so on. What is the probability that the
best team wins the tournament?

Solution:

Proof. 1 + 1 = 2.

(b) (3 points) Use Chernoff bounds to bound the probability that the best team will
not win the tournament, if each match-up occurs as a best-of-k series. How many
games do you end up conducting in total to get a 1− ε probability of the best team
winning?

Solution:

Proof. 1 + 1 = 2.

(c) (5 points) Now design a tournament with a total of Oε(n) games to get 1 − ε
probability of the best team winning eventually. Oε(n) means O(n) for all constant
ε > 0.

Solution:

Proof. 1 + 1 = 2.

2. (25 points) (Counting Distinct Elements) Universal hash families come in handy
when designing streaming algorithms that make a single pass and use very little space in
comparison to the size of the input stream. Here, we will construct a streaming algorithm
to estimate the number of distinct elements in the stream. The technique here is from a
seminal work of Alon, Matias and Szegedy (STOC 1996); the authors were awarded the
Gödel prize in 2005 for this work.

(a) (5 points) Recall that for a prime p, and an integer k, where 1 ≤ k ≤ p, the
collection:

Hk = {hab : x→ (ax+ b) mod k | a, b ∈ Fp, a 6= 0}

is a 2-universal hash family. Prove the following lemma:
Lemma 1. For every set S ⊆ Fp,

1. if |S| < k, then
Prh←H4k

[∃x ∈ S : h(x) = 0] < 1/4;

2. while, if |S| ≥ 2k, then

Prh←H4k
[∃x ∈ S : h(x) = 0] ≥ 3/8.

Solution:

Proof. 1 + 1 = 2.

(b) (10 points) Consider a stream of integers: x1, x2, . . .; where each xi ∈ [n]. For a
parameter k, where 1 ≤ k ≤ n, design a streaming algorithm with the following
guarantees:

1. if the stream contains strictly less than k distinct elements, the output is No

with probability at least 1− 1/n2;

2. while, if the stream contains at least 2k distinct elements, then the output is
Yes with probability at least 1− 1/n2.

The algorithm should proceed in three phases as in the template solution below.
Fill in the details of the algorithm in the given template; you need not provide
implementation details but should be precise in your description.

Solution:

• Initialization: (pre-processing done before making the pass)

1. TODO: Fill in the steps.

• Processing : (x ∈ [n] is the element to process)

• Output : (called after the input is processed)

Prove the guarantees of the algorithm designed above and calculate the space used
by the algorithm (in O(·) notation).

Solution:

Proof. 1 + 1 = 2.

Page 2

(c) (10 points) Using the above, design a streaming algorithm that outputs an estimate
of the number of distinct elements, upto a factor 2 with probability at least 1−1/n
(n is a parameter passed to the algorithm). As before, the algorithm should be
in three phases (and may use the above procedures). Prove the guarantees and
calculate the total space used by the algorithm.

extra creditextra creditextra credit

(d) (5 extra credit points) Show how the above algorithm can be modified to obtain a
factor (1 + ε)-approximate with high probability.

extra creditextra creditextra credit

(e) (10 extra credit points) Can you reduce the space even further while maintaining
the guarantees as in part c? The improvement should be asymptotic, and not just
by a constant factor.

3. (15 points) (Locality Sensitive Hashing) Given a distance metric d : X ×X → R≥0,
a LSH family is a collection:

H = { h : X → [M] }

such that, for all x, y ∈ X:

1. if d(x, y) ≤ R,
Prh←H [h(x) = h(y)] ≥ p1;

2. while, if d(x, y) > cR,
Prh←H [h(x) = h(y)] < p2.

3. moreover, this (collision) probability is a non-increasing function of d(x, y).

Here, R, c, p1, p2 are parameters that determine the quality of the hash family. As was
outlined in class, Indyk and Motwani designed an algorithm to store n data-points so
that c-approximate near-neighbor queries may be answered in sub-linear time.

Recall that the algorithm consists of two components:

• Preprocessing: (given the data-points x1, . . . , xn, and two integer parameters k, l
chosen appropriately.)

1. Choose l hash functions, g1, . . . , gl ← Hk and initialize hash tables for each of
them. In other words, each gi is the concatenation of k (randomly chosen) hash
functions from H.

2. Insert each data point in each of the hash functions.

• Query: (given data-point y.)

1. Iterate over the points mapped to gi(y) for 1 ≤ i ≤ l in the hash table and
output all points xj at distance at most cR.

2. Abort the above search if more than 10l data-points have already been looked
at among all the hash tables.

Page 3

(a) (3 points) Calculate the value of k so that, if x, y ∈ X satisfy d(x, y) > cR, then:

Prg←Hk [g(x) = g(y)] < 1/n.

Show hence that the probability of aborting the query procedure is at most 1/5.

(b) (6 points) For the value of k calculated above, calculate the collision probability,
under a random g, of a data-point x that is indeed within distance R from y.
Calculate l such that the probability that none of the hash functions gi cause a
collision between x and y is at most 1/5.

(c) (6 points) State tha guarantees of the algorithm: output, space-complexity, time-
complexity and confidence for the values of k, and l calculated above.

Page 4

