
CS 6841 - Assignment 2 TODO: Name, TODO: Roll

1. (20 points) (Simpler JL Dimension Reduction?) In class, we saw how to reduce the
dimension of n points from D to ` = O(logn

ε2
) using projections into ` random directions,

and preserve all pairwise distances to within (1 ± ε) factor. One of the suggestions in
class was whether we can simply reduce dimension by sampling a set S of ` random co-
ordinates (say with repetition), and representing each point only using the coordinates
of S (possibly scaling each coordinate). Will this work?

(a) (5 points) Give a simple example of n vectors in n dimensional space, and sampling
S = ` coordinates will not preserve all pairwise distances to within a factor of (1±ε).
That is, if x1, x2, . . . , xn are the n vectors in n dimensional space, and x̂1, x̂2, . . . , x̂n
are the projections in ` dimensional space by only using the coordinates in S, then
w.h.p there exists no universal scaling C such that (1 − ε)||xi − xj||2 ≤ ||Cx̂i −
Cx̂j||2 ≤ (1 + ε)||xi − xj||2. (Hint: think of sparse vectors.)

Solution:

Proof. 1 + 1 = 2.

(b) (10 points) Now suppose we additionally had the promise that every coordinate in
each vector is small, i.e., at most, say C/

√
n, for some constant C (for simplicity,

assume that all vectors are unit vectors). Then show that projecting down to ran-
dom subset of ` coordinates (for a suitable `) actually works to achieve a weak form
of dimensionality reduction, i.e., all n vector lengths are approximately preserved
up to scaling.

Solution:

Proof. 1 + 1 = 2.

(c) (5 points) Explain in words why the projection onto a random k dimensional sub-
space (as we did in class) intuitively works. (Hint: try viewing this in two steps, a
random rotation of all points followed by sampling coordinates at random.) Hope-
fully, you would convince yourself that this is another illustration of the power of
randomization, where it acts as insurance against some bad events conspiring.

Solution:

Proof. 1 + 1 = 2.

2. (10 points) (Mysteries of High-Dimensional Geometry) It is a basic fact in linear
algebra that there can be at most n orthogonal vectors in Rn. We now explore how
many vectors can be mutually almost orthogonal to each other. That is, we will try to
define a exponentially large (in n) collection of vectors such that for any pair u and v,
|〈u, v〉| ≤ ε.

(a) (5 points) Pick two vectors uniformly at random in {−1, 1}n (i.e., each coordinate
of each vector is independently 1 or −1 with probability 1/2). Use your favorite
concentration bound to show that Pr[|〈x, y〉| > εn] ≤ O(exp(−ε2n/10))

Solution:

Proof. 1 + 1 = 2.

(b) (5 points) Sample a set S of vectors from {− 1√
n
, 1√

n
}n independently and uniformly

at random. How large a set S can you tolerate while ensuring that every pair of
vectors from S is ε-orthogonal (i.e., absolute value of inner product is at most ε)?

Solution:

Proof. 1 + 1 = 2.

3. (20 points) (LPs: How good are they?) Often times, we use a Linear Programming
approach to find good approximation algorithms for NP-hard optimization problems. For
example, the current best known approximation algorithms for problems in scheduling,
routing, resource allocation, etc. are all via LP relaxations. However, we should be
careful in directly using LPs, as sometimes they suffer from what are called integrality
gaps, where the LP optimal solution can be highly fractional, and can’t be used to
recover good integral solutions.

(a) (5 points) Consider the vertex cover problem: given a graph G = (V,E) where
each vertex has a non-negative cost cv, we want to choose the cheapest set S of
vertices such that every edge is incident on at least one vertex in S. Write this as
an Integer Programming formulation, and also mention the changes to obtain the
corresponding LP relaxation.

Solution:

Proof. 1 + 1 = 2.

(b) (5 points) Design a simple deterministic 2-approximation algorithm using an opti-
mal LP solution. That is, find a solution S such that w(S) ≤ 2Cost(Opt LP Soln).

Solution:

Proof. 1 + 1 = 2.

(c) (5 points) Now consider the following problem: given a collection of items 1, 2, . . . , n
where item i has utility ui ≥ 0 and cost ci ≥ 0. There is also a utility requirement
of U ≥ 0. The goal is to choose the cheapest subset of items such that their total

Page 2

utility exceeds the requirement U . Write an Integer Programming formulation, and
the corresponding LP relaxation.

Solution:

Proof. 1 + 1 = 2.

(d) (5 points) Can there be a good rounding algorithm like Vertex Cover? In other
words, given any instance, is it always possible to round a feasible LP solution to
an integer solution S such that c(S) ≤ O(1)cost(LP OPT)? If not, give an example
saying why.

Solution:

Proof. 1 + 1 = 2.

Page 3

