
CS 6841 - Assignment 4 TODO: Name, TODO: Roll

1. (25 points) (Offline Paging Problem) In class, we discussed the paging problem, and
presented a randomized online algorithm for it. We now solve the offline setting of the
problem: here, we are given a collection of n pages, and k cache slots which are initially
empty. Then we are also given a sequence of requests p1, p2, . . . , pT ahead of time. The
goal is figure out an eviction policy so that the number of cache misses is minimized,
i.e., any time a page is requested and it is not in the cache at the time it was requested,
it is a cache miss, and the page has to be brought into cache, while evicting some other
page which already exists in cache. As mentioned, the goal is to figure out the optimal
sequence of evictions to minimize the number of cache misses.

(a) (5 points) Consider the FIFO policy: when a page is requested which is not in the
current cache, evict the page which has been around in the cache for the longest (i.e.,
it arrived first among all pages in cache). Do you expect fewer cache misses when
the cache gets larger and larger? Answer this by analyzing the number of cache
misses for the following input sequence of page requests 3, 2, 1, 0, 3, 2, 4, 3, 2, 1, 0, 4
in two cases: (i) the cache has 3 slots, and (ii) the cache has 4 slots.

Solution:

Proof. 1 + 1 = 2.

(b) (5 points) Also, how bad can FIFO be in terms of the performance? Is it an optimal
algorithm? As a function of k, find a simple example where FIFO doesn’t do well
compared to the optimal eviction sequence.

Solution:

Proof. 1 + 1 = 2.

(c) (10 points) Finally come up with the optimal eviction algorithm if the entire se-
quence is known, by relating it to a problem we studied in the mid-sem.

Solution:

Proof. 1 + 1 = 2.

2. (10 points) (Doubling Trick in Algorithms: Do we need Promises?) In class,
we designed an online routing algorithm with the following guarantees: for a request
sequence σ of sources and destinations, let Lσ be the minimum congestion (i.e., max load
on any edge) with which all the requests can be routed. Then, we have an algorithm
A (which if it knows the value of Lσ), finds a routing where every edge has congestion
at most CLσ logm for some constant C. Now we get around the assumption that the
algorithm needs to know Lσ, by running the algorithm in phases: initially, in the first
phase, start with a guess of L̂σ = 1 and run algorithm A; whenever the congestion in the
current phase exceeds CL̂σ logm, double the estimate of L̂σ, and start the next phase.



Show that, at any stage, the congestion of this algorithm is O(logm)Lσ, where Lσ is the
optimal congestion for the set of requests which have currently arrived until now.

Solution:

Proof. 1 + 1 = 2.

Page 2


