
CS 6841 - Assignment 5 TODO: Name, TODO: Roll

1. (25 points) (Probabilistic Method) Probabilistic method refers to the technique of
proving the existence of an object by constructing a random process underwhich the
desired object is output with non-zero probability. This may sound like a very round-
about way of proving things, but is really a more analytics version of the Piegeon-Hole
principle.

In this exercise, we prove the existence of expander graphs as used in the AKS sorting
networks. We work with bipartite graphs G = (L,R,E) where L and R are the left and
right sets of vertices, satisfying |L| = |R| = n; and E ⊆ L×R is the set of edges between
L and R. Such a graph is said to be ε-left-expanding if for every set S ⊆ L satisfying
|S| ≥ ε |L|,

|N (S) := {r ∈ R | ∃l ∈ S : (l, r) ∈ E}| ≥ (1− ε) |R| .

Our random process picks d random perfect matchings and sets E to be the union of
these perfect matchings.

(a) (2 points) Prove that the random process outputs a graph where each vertex has
degree at most d.

Solution:

Proof. 1 + 1 = 2.

(b) (10 points) Let us fix a set S ⊆ L satisfying |S| ≥ ε |L|, and a set T ⊂ R satisfying
|T | < (1− ε) |R|. Show that the probability that N (S) ⊆ T is at most (1− ε)εnd.

Solution:

Proof. 1 + 1 = 2.

(c) (10 points) Above, we have shown that there is no fixed S, T that is a counter-
example to the ε-left-expanding property of our random graph. To complete the
argument, we simply take union bound over all sets S, T . Show that for d large
enough in terms of ε (but independent of n), part (b) holds for every set S, T
satisfying the size constraints with probability at least 1 − exp(−n). This proves
that the output of the random process is an expander with probability exponentially
close to 1.

Solution:

Proof. 1 + 1 = 2.

(d) (3 points) Define ε-right-expanding similarily (but with left and right transposed)
and further call G ε-expanding if it is both left and right expanding. What is the
probabilty that a graph G output from the above process is ε-expanding?

2. (20 points) (Different Graph Sparsifier) In class, you saw one kind of graph spar-
sifiers, called spectral sparsifiers. In this homework, you’ll design another kind which
approximately preserves pairwise distances in a graph while retaining very few edges. In
the following, let G = (V,E) denote a undirected, unweighted graph on n vertices and
m edges where m is large, say Ω(n2).

(a) (10 points) Construct a subgraph H in the following manner: randomly sample
each vertex v as a “hub” with probability p (i.e., add v to S w.p p). Then construct
a subgraph Hv which preserves shortest paths to all other vertices from v. Using
∪v∈SHv as a backbone (of course, we may need to add other edges to Hv), construct
H so that all distances are preserved up to an additive 2. (Hint: break up the graph
into high and low degree vertices depending on p, and try to use the fact that high-
degree vertices are likely to be neighboring sampled hubs.) Optimize for p so that
the number of edges in H is at most O(n1.5polylog(n)).

Solution:

Proof. 1 + 1 = 2.

(b) (10 points) Suppose the graph H we construct need not be a subgraph of G (i.e.,
we can introduce new vertices), and moreover, is allowed to have weights (non-
negative) on edges. Show that by adapting the above solution to reach hubs from
both end points, we can bring down size of H to O(n4/3polylog(n)) edges but now
all distances are only preserved upto additive 4.(Hint: now you can easily preserve
distances between hubs by just adding a complete graph with the shortest path
distances as the weights.)

Solution:

Proof. 1 + 1 = 2.

Page 2

