
CS 6841 - Mid-Semester TODO: Name, TODO: Roll

1. (25 points) (Flows, Cuts, and Expander Graphs) You should recall the famous
max-flow min-cut theorem which ascertains the following beautiful theorem: given a
undirected graph G = (V,E) where each edge has unit capacity, and a source vertex s
and sink vertex t, consider the two quantities: Let Fmax denote the maximum flow which
s can send to t while respecting edge capacities; let Cmin denote the minimum number
of edges crossing any partition of the form (S, V \ S) where s ∈ S and t ∈ V \ S. Then
Fmax = Cmin. In fact, one such proof of this theorem is by using LP duality. In this
question, we will study the same from a more practical setting.

In this question, there are many source,destination requests of the form (s1, t1), (s2, t2),
. . . , (sk, tk) where s1 wants to send some flow to t1, s2 wants to send some flow to t2, and
so on. The goal is to maximize the total throughput, i.e., send some λi flow from si to
ti such that

∑
i λi is maximized. You may assume that all sources are sinks are distinct

vertices (i.e., no si is the same vertex as another sj or tj).

We now state below, the Linear Program which captures this problem. The set P(si,ti)

is the set of all simple paths from si to ti, and every element p ∈ P(si,ti) is a simple
path from si to ti. Ignore the fact that there are exponentially many variables — we are
not trying to implement this in a computer, we are only using LPs to understand/prove
some very fundamental mathematical properties about flows and cuts in this question.
In fact, this exercise shows how to use algorithmic techniques like LPs and Duality to
show deep mathematical properties.

max
k∑

i=1

λi

s.t
∑

p∈P(si,ti)

fp ≥ λi ∀1 ≤ i ≤ k

∑
i

∑
p∈P(si,ti)

s.t e∈p

fp ≤ 1 ∀e ∈ E

fp ≥ 0 ∀i, ∀p ∈ P(si,ti)

(a) (5 points) Let Fmax then denote the maximum flow, i.e., optimum value of the
above LP. Likewise, analogous to Cmin defined above, we can define a similar cut
value: consider partitioning the graph vertices into disjoint sets S1, S2, . . . , Sp for
any 2 ≤ p ≤ n. Call such a partition a separating partition if for each 1 ≤ i ≤ k, si
and ti are in different sets (i.e., all sources and sinks are separated). As an extreme
example, the partition where each vertex is in its own set {v} is one such separating
partition with t = n. Now, let Cmin denote the fewest number of edges cut (which
go between different sets) among all separating partitions. Show that Fmax ≤ Cmin.

Solution:

Proof. 1 + 1 = 2.



s1 t2 s2 t3 s3 t1

r

u v w

Figure 1: Figure for Gap Example

(b) (10 points) Consider the following instance in Figure 1, and show that Fmax can be
strictly smaller than Cmin. This shows that having more than one source or sink
makes the max flow-min cut theorem false!

Solution:

Proof. 1 + 1 = 2.

(c) (10 points) Write the dual of the LP above, and say why it is the LP relaxation of
the problem of finding the minimum cut defined above in part (a).

Solution:

Proof. 1 + 1 = 2.

2. (20 points) (Guessing the Last Heads) You are given a sequence of n coin numbered
1 through n, and values p1, p2, . . . , pn between [0, 1] which denote the probability that
the ith coin comes up heads; these are all independent of each other. Then I toss these
coins one by one, starting with the first coin. If you see a head, then your goal is to
predict if that will be the last head in the sequence, i.e., there will be no more heads.
You have only one chance to make such a prediction, and you win if you are correct, that
is, I finish tossing all remaining coins and find no further head. Your task is to devise
the optimal strategy to maximize the probability of winning. Recall you know all the pi
values, so use this in wisely deciding when to make the prediction. Also recall you have
only one chance of making a prediction, that is, say you have seen the 10th coin and it
is a head, and you decide to predict that it is the last head. Then you win only if coins
11 through n all turn up tails.

Most of modern day resource allocation algorithms have such stochastic information
handy, and need to make online decisions as above. Understanding this framework will
prepare you to tackle these very real challenges system-designers face. The key lies in
correctly modeling the systems challenges in a clean algorithmic manner. Once you do
that, techniques like what you will devise for this question will immensely help you.

(Hint: use Dynamic programming, using the value Vi which denotes the optimal success
probability of predicting correctly when only coins i through n are at play, i.e., you have

Page 2



seen and skipped the first i − 1 coins and can only make predictions on i through n.
For example, Vn is simply pn, as you can predict with certainty if you see a head, which
happens with probability pn.)

Solution:

Proof. 1 + 1 = 2.

3. (15 points) (Quickly Testing Matrix Product) You are given three n× n matrices
A,B,C, and want to check if C = AB reasonably quickly.

(a) (3 points) What’s the naive way to solve this problem? What is the running time
complexity?

Solution:

Proof. 1 + 1 = 2.

(b) (12 points) Now let’s devise a randomized algorithm which is significantly faster
that your naive solution. Such ideas are the key takeaways from this course, demon-
strating the power of cleverly using randomness. Indeed, pick a random binary
vector f ∈ {0, 1}n where each coordinate is 0 or 1 with probability 1

2
independently.

Show that ABf = Cf always holds if AB = C, and holds with probability at most
1/2 if AB 6= C.

Solution:

Proof. 1 + 1 = 2.

(c) (10 points) Even if you couldn’t prove part (b), assume it is true. How do you boost
the failure probability to ε. What is the overall running time of this algorithm which
fails with at most ε probability. Be clever in testing whether ABf = Cf quickly.

Solution:

Proof. 1 + 1 = 2.

Page 3


