
CS 6841 - Mid-Semester TODO: Name, TODO: Roll

1. (10 points) (Who wins the election? Opinion Poll Strategy) Imagine there are
only two parties standing in the national election, and you have access to sampling and
calling up uniformly random people from the electorate to find out who they’re going to
vote for. If the total population is N and an unknown 1

4
≤ p ≤ 3

4
fraction prefer BJP

and (1− p) prefer Congress, what’s the maximum number of people you need to sample
to estimate p upto an additive error of ε? Give the best possible answer up to constant
factors, i.e., don’t try to optimize the constants.

2. (10 points) (More JL, More High-Dimensional Geometry) There can only be d
pairwise orthogonal vectors in Rd (as the span of these vectors is of dimension at least
d). On the other hand, as we saw in HW2, for any ε > 0, there can be exponentially
(in the dimension d) many unit vectors which are nearly orthogonal in d dimensions,
i.e., have absolute value of their pairwise inner products at most ε. Show that this is a
consequence of the Johnson-Lindenstrauss Lemma.

Theorem 1. For any ε > 0, and any integer d, there exists a collection of vectors
v1, . . . , vt ∈ Rd, with t = exp(Ωd) such that:

|〈vi, vj〉| ≤ ε ∀ distinct i, j ∈ [t].

Solution:

Proof. 1 + 1 = 2

3. (10 points) (LP-Based Approach for P=NP?) We will now attempt to show that
a well-known NP-hard problem, the hamilton path problem is solvable using Linear
Programming. Your goal is to find out if we are making any errors in our thought
process. Indeed, our high level approach is to formulate the Hamilton Path problem as
a flow problem, and solve the flow problem integrally.

(a) (0 points) In class, we saw the flow LP polytope. Here is a similar LP formulation
for the minimum cost flow problem. That is, we are given a directed graph D =
(V,A), each arc a has two integer capacities `a and ua with `a ≤ ua, and also a
non-negative cost ca. There is also a source vertex s and destination vertex t. The
goal is to find the minimum cost way to send 1 unit flow from s to t in G such that
the flow respects the upper and lower capacities on the different arcs.



Solution:

min
∑
a

cafa

s.t
∑

a∈δin(v)

fa =
∑

a∈δout(v)

fa ∀v ∈ V \ {s, t}

∑
a∈δout(s)

fa −
∑

a∈δin(s)

fa = 1

∑
a∈δin(t)

fa −
∑

a∈δout(t)

fa = 1

`a ≤ fa ≤ ua ∀a ∈ A

(b) (5 points) In general, the flow polytope above is integral if the lower and upper
bounds are integral. That is, an optimal solution of the LP assigns flow values
which are integer values as long as the capacities are all integer values also. Now,
consider an undirected graph G = (V,E) where each edge e has a cost 1, and a
source vertex s and sink vertex t. Suppose each edge has lower and upper bounds
on the flow as 0 and 1, and additionally each vertex now has a lower bound of flow
as 1 and upper bound also as 1. Suppose the goal is to find the minimum cost flow
in this problem. Show how to reduce this problem to one introduced in the previous
part.

Solution:

Proof. 1 + 1 = 2.

(c) (5 points) Finally, we attempt to solve the following Hamilton path problem using
the previous part: In this problem, given a graph G and s and t, the goal is to
determine if there is an s–t path that visits each vertex exactly once. Suppose
given this instance, we solve the flow problem defined in the previous part. Since
our capacity bounds are integral, the resulting flow LP is also integral. Will this
recover the Hamilton path? Explain what could go wrong if anything goes wrong.

Solution:

Proof. 1 + 1 = 2.

4. (15 points) (Ambulance Migration) In this question, you will design an algorithm
for the following problem: The input consists of n locations, along with a metric space
(represented by pairwise distances d(i, j) between point i and point j which satisfy
d(i, j) + d(j, k) ≥ d(i, k)). Initially k ambulances are all in a central hospital at location
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i0. We are also given a sequence of locations i1, i2, . . . , iT which need to be serviced by
these ambulances on successive days 1, 2, . . . , T . Your goal is to find out how to move
ambulances to these locations so as to minimize the total movement cost. For example,
if there are only two locations i1 and i2 (i.e., T = 2), there can only be two possible
strateges: one strategy is to move one ambulance to location i1 on day 1 and then the
same ambulance to i2 on day two. The cost here is d(i0, i1)+d(i1, i2). Alternately, another
strategy is to move one ambulance to i1 on day 1, and move the second ambulance to
i2 on day 2 at a total cost of d(i0, i1) + d(i0, i2). Can you design an algorithm with
running time polynomial in n and T to compute the minimum cost movement sequence.
Remember that the requests are ordered, that is, we can’t service i2 before i1.

5. (15 points) (Datastructure Design) Suppose we have n points on the plane, x1, . . . , xn ∈
Rk and wish to construct an algorithm that answers queries, given y ∈ Rk, for maxi-
mizing and minimizing the inner product 〈xi, y〉 , i ∈ [n]. In other words, given y, the
algorithm should output i and j that (respectively) maximize and minimize the inner
product with y.

(a) (10 points) Show that when k = 2 (that is, the points are on a plane), we can
design algorithm that answer the queries in time O(log n).

(b) (5 points) How do you extend the data-structure designed above for larger values
of k. Assume k is a parameter much smaller than n and thus, we wish to minimize
the running-time in terms of n first, and then k.
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A Lecture Materials

A.1 Tail Inequalities

Often in our analysis, we model an interesting quantitity as a (real) random variable X and
want to bound the tail of X (that is probability of X taking large values). The Markov’s
inequality states that when X ≥ 0:

Pr [X ≥ tE [X]] ≤ 1/t.

Often, the variance,

Var [X] := E
[
(X − EX)2

]
,

is known to be small. Applying the Markov’s inequality to the square-deviation: (X −
E[X])2, a non-zero random variable for any X, we have the Chebyshev’s Inequality :

Pr [|X − E [X]| ≥ tVar [X]] ≤ 1/t2

A.2 Johnson-Lindenstrauss Lemma

The JL Lemma is a hallmark of dimension-reduction techniques.

Lemma 2. For every ε > 0, and every collection of m points, x1, . . . , xm ∈ Rn, there is a
mapping of the points: (xj → yj), with yj ∈ Rk for any k ≥ 8 log(m)/ε2, where:

(1− ε) · ‖xi − xj‖2 ≤ ‖yi − yj‖2 ≤ (1 + ε) · ‖xi − xj‖2 ; ∀i, j ∈ [m].
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