
CS6841: Advanced Algorithms IIT Madras, Spring 2016
Lecture #3: Cuckoo Hashing January 22, 2016
Lecturer: Ravishankar Krishnaswamy Scribe: Mohit Daga and Purnata Ghoshal

1 Recap: Balls and Bins

In the previous lecture, we saw the problem of Balls and Bins: given n balls and n bins, we pick
a ball and put it into a bin chosen independently and uniformly at random. We have also proven
in class that the maximum loaded bin has Ω(logn

log logn) balls in it. This bound is tight with high
probability, so the maximum load is unlikely to be larger. However, using the power of two choices,
we can reduce the upper bound on maximum load to O(log log n).

A natural question to ask would be whether we can further reduce the bound if we increased the
number of choices from 2 to any natural number d > 2. The answer turns out to be negative, the
bound on maximum load being Θ(log lognlog d). Having d choices would also make the algorithm more
complex, hence it is better to go with 2 choices.

2 Concentration Bounds

This section is a refresher for probabilistic concentration bounds. We demonstrate their power for
coming up with tighter bounds in algorithmic analysis. We limit our discussion to the comparison
of Markov’s and Bernstein’s Inequalities. Although students are encouraged to read further about
Chebeyshev’s, Jensen’s, Han’s, Hoeffding’s among other inequalities.

Before we begin, let us state the two inequalities:

Markov’s Inequality If X is a non-negative random variable, then for an arbitrary t > 0 we have

Pr(X ≥ t) ≤ E(X)

t

Bernstein’s Inequality Let x1, x2, . . . , xn be random variables such that 0 ≤ xi ≤ 1 or they are
scaled appropriately and let σ2 =

∑n
i=1 V ar {xi}, then for an arbitrary t > 0

Pr

(
n∑
i=1

xi − E(X) ≥ t

)
≤ exp

(
− t2

2(σ2 + t
3)

)

Now, to demonstrate use of these inequalities, Let us spin a biased coin n times. Let p be the
probability for it to be head. We take the following three cases to understand the types of bounds
we can get from the two inequalities

Case:1 pi = 1
n∑

pi = 1
E [#heads] = 1
σ2 =

∑
npi(1− pi) < npi = 1

By Markov’s inequality we can say Pr(#heads ≥ 2) ≤ 1
2 and

By Bernstein’s inequality (using t = 3 log n), Pr(#heads− 1 > 6 log n) ≤ exp
(
− 18 log2 n

1+2 logn

)
≤

n−9.
1

Case:2 pi = 6 logn
n∑

pi = 6 log n
E [#heads] = 6 log n
σ2 =

∑
npi(1− pi) < npi = 6 log n

By Markov’s inequality we can say Pr(#heads ≥ 12 log n) ≤ 1
2 and

By Bernstein’s inequality (using t = 6 log n), Pr(#heads−6 log n ≥ 3 log n) ≤ exp
(
− 9

2
log2 n

(6 logn+logn)

)
≤

n−
9
14

Case:3 pi = 1
2∑

pi = n
2

E [#heads] = n
2

σ2 =
∑
npi(1− pi) < npi = n

2
By Markov’s inequality we can say Pr(#heads ≥ n) ≤ 1

2 and

By Bernstein’s inequality (using t =
√

6n log n), Pr(#heads−n
2 ≥
√

6n log n) ≤ exp
(

−6n logn

(n+ 2
3

√
6n logn)

)
≤

n−6

In all the above 3 cases Markov’s inequality gives weak bound on the estimation of concentration.
Where as from Bernstein’s inequality it is evident that distribution is densely concentrated near
the mean. Whereas Markov’s inequality doesn’t take care of the nature of distribution, Bernstein’s
inequality considers it (by means of the variance). This results in tighter bounds.

3 Cuckoo Hashing

Salient Features of Cuckoo hashing [1] involves :

• Its an adaptive hashing Algorithm.

• Insertion: O(1) expected and O(log n) worst case w.h.p.

• Lookup: O(1)

• Deletion: O(1)

• Space: O(n)

In Cuckoo’s Hashing two universal hash functions h1, h2 : U → [m] are used, corresponding to each
function there is a hash table. Also |U| � m,n and m = (1 + ε)n, for an arbitrary ε > 0. It is
assumed that the elements to be inserted are independent and identically distributed. Since the
two functions are universal Pr [h1[X] = a ∧ h2[X] = a] ≤ 1

m2

Lookup: For an element x, this involves finding the corresponding positions in both the tables
using h1, h2. If the said element is found it is returned.

Deletion: Similar to lookup.

Insertion: To insert an element x into the hash table we look for the its position in table 1 using
h1(lets fix this for every start), if h1(x) is empty we insert x into it, otherwise we evict the
element in h1(x) and put x in it. The evicted element has to go find its position in table 2
using h2 hash function. This continues until no element has to be evicted. We will analyse
insertion in the forthcoming sections.

2

Following is a pseudo code for inserting an element in the cuckoo’s hash table. Note thatMaxLoop←
totalElem+ 1. Where totalElem are the number of elements in the connected component.

Algorithm 1. CuckooHash(x)

1: loopCount← 0
2: while loopCount 6= maxLoop and x 6= null do
3: loopCount← loopCount+ 1
4: if T1[h1(x)] is empty then
5: T1[h1(x)]← x
6: return
7: else
8: y ← T1[h1(x)]
9: T1[h1(x)]← x

10: x← T2[h2(y)]
11: T2[h2(y)]← y
12: end if
13: end while
14: if loopCount = maxCount then
15: ## Hashing Failed
16: ReHash(x)
17: end if

end

9

16

8

58

91 16

8
58

91

9

10

h1 h2 h1 h2

(I) (II)

Figure 3.1: Demonstrates Cuckoo hashing. (I) is the state of hash table before inserting 10. Each
edge represents an element. Arrows represent the current position of the element in the hash table.
Tail represents the corresponding position of the element in other hash table. Apparently inserting
10 is an unlucky case. All the elements gets swapped to the position in the different hash table.
Finally 10 finds its position in hash table corresponding to h2

Definition: Cuckoo Graph is a directed graph G(V,E) where V is the set of all the buckets in the
the two hash tables T1, T2. If x ∈ p1 = T1[h1(x)] and p2 = T2[h2(x)] then (p1, p2) ∈ E. Similarly if

3

y ∈ q1 = T2[h2(x)] and q2 = T1[h1(x)] then (q1, q2) ∈ E.

We will use Cuckoo Graph to show the necessary and sufficient conditions of hashing to succeed.

Lemma: Let x be the element to be inserted, further say CC is the connected component corre-
sponding to T1[h1(x)] in the corresponding Cuckoo Graph. Hashing fails if CC has two cycles.
Proof: If CC(Vcc, Ecc) has two cycles then, |Ecc| > |Vcc| thus inducing one more element in CC
will lead to overstuffing. Thus hashing fails. Rehash is required.

Lemma: Similarly hashing will succeed (rehash is not required) if CC has at most one cycle or is
a tree.
Proof: There are three sub cases for this

Case1, Cycle is not traversed while inserting This is fairly trivial. Since you don’t enter a
cycle. the element is accommodated in one of the hash tables without entering a cycle. Thus
it cannot loop and hashing succeeds.

Case:2, Cycle is traversed, and finishes inside it Since Cuckoo Graph is Bipartite in nature.
Thus the eviction transcends from one table to the other. This finally leads to new position
for the element to be inserted. Figure. 3.2 demonstrates this case.

Before Inserting After Inserting

T2(32)

T2(21)

T1(11)T2(44)

T1(5) T1(21)

T2(11)T1(44)

T2(5)

Figure 3.2: Demonstrates Case2. Here we insert 32 in the table. h1[32] = h1[5], this creates
collision. This results in eviction of 5 from T1. Note that finally 32 finds its right place in T2.

Case3, Cycle is traversed and finishes outside the cycle New element to be inserted col-
lides with an element outside the cycle, further the elements transcends to both the tables
and finally a place for the new entrant is found. It is also intuitive from this case about how
maxLoop ≤ 1 + totalElem .

T1(7)

T1(8)

I) Before Inserting III) After InsertingII) Intermediate Step

T2(7)

T1(56)
T2(8)

T1(91)T2(24)

T2(56)

T2(91)T1(24)

T1(64)

T1(7)

T1(56)
T2(8)

T1(91)T2(24)

T2(64)

Figure 3.3: Demonstrates Case3.

3.1 Analysis of Cuckoo Hashing

We want to show the following:
4

1. Work done per insertion ≤ 2× the size of connected components

2. E[Size of any connected component] ≤ 1 + 1
ε ≤ O(1ε)

3. With high probability all connected components have ≤ O(lognε) size on average.

4. Pr[rehashing] = Pr[getting 2 cycles in same connected component]

The proof of point 4 can be seen in [2]. So we will prove the rest of the three statements here.

Point 1: This is evident from the algorithm previously described. Each connected component is
traversed at most twice as edges in a component can be flipped to break a cycle of rehashing. In
the graph such a cycle occurs when a vertex has no outgoing edge.

Points 2 and 3: For proving these, we first try to bound ∀ u sampled uniformly at random from
V (G), E[size of connected component u belongs to]. As the Cuckoo Graph is generated using the
hash functions, for ease of understanding, we cheat and view each edge in the cuckoo graph as
being generated uniformly at random. We use this to explore the connected components in a BFS
manner, starting with an arbitrary vertex, and seeing how many connections it could have, and
then exploring all the children.

The stepwise algorithm for constructing this BFS-like random tree corresponding to the Cuckoo
Graph is as follows:

• Sample u.

• Sample children vi of u, such that (vi, u) or (u, vi) ∈ E(G). Random variables {Zi}1≤i≤n are
sampled. If h1(Zi) = u and h2(Zi) = vi, then node vi is added as a child of u. {Zi}1≤i≤n are
binomial random variables sampled from the distribution Bin(n, 1

m).

• The above process is continued from each leaf vi.

• The construction is over when sampling from each current leaf v does not add any vertex, i.e
∀Z ∼ Bin(n, 1/m), h1(x) 6= v.

Each node in this tree has at most n children with probability 1/m for each edge. From each node,
all n r.vs are resampled. Hence the sampled vertices are binomial random variables of the form
Bin(n, 1

m). As 1
m = 1

(1+ε)n ,

∀Zi, E[Zi] =
1

1 + ε
,

i.e on average, there is < 1 children attached to the root u.

Let Xi denothe the number of leaves after depth i. Hence,
X0 = 1
Xi+1 =

∑Xi
j=1 Zj , such that Zj = Bin(n, 1

m).

The randomized algorithm terminates at depth l when Xl = 0. The size of the tree is
∑l−1

i=0Xi.
Now, ∀i, Zi = Z such that Z = Bin(n, 1

m).

5

Claim 3.1. E[Xi] = E[Z]i

Proof. (By Induction)
Base Case: E[X0] = 1 = E[Z]0 as X0 = 1.

Assuming inductively for i,
E[Xi+1] = E[

∑Xi
j=1 Zj].

By Wald’s equation, E[
∑Xi

j=1 Zj] = E[Xi]E[Z]i

Using the inductive hypothesis, E[
∑Xi

j=1 Zj] = E[Z]i+1.

Proof. (Point 2)

E[size of any connected component] =E[X0 +X1 + · · ·]
=1 + E[Z] + E[Z]2 + · · · (by above claim)

=
1

1− E[Z]

=
1

1− 1
1+ε

=1 +
1

ε
= O(

1

ε
)

To analyse the total size of all connected components, we need to count the number of connected
components. A stepwise procedure for that would be as follows:

1. C = 1 initially, where C is the counter for connected components. Let root = unspent.

2. Run algorithm 3.1, introducing z1 ∼ Z = Bin(n, 1
m) many unspent vertices.

3. C ← C + z1 − 1, since the root and its children form a single connected component.

We continue above steps until Xl = 0. If the total number of steps taken is l, then for t steps,
0 ≤ t ≤ l, we want to show, with high probability,

Ct = 1 +
t∑
i=1

(zi − 1) < 1

Hence, the probability that size of all connected components is small can be represented by:

Pr[Ct ≥ 1] is small

= Pr[1 +
t∑
i=1

(zi − 1) ≥ 1] is small

= Pr[
t∑
i=1

zi ≥ t] is small

6

We will estimate this probability using concentration bounds.

Pr[There will be unspent vertices after t explored vertices]

= Pr[
t∑
i=1

zi ≥ t]

Using Bernstein’s Bound, Pr[Ct > E[Ct] + t] < exp(−t
2/3

σ2+t/3
), and given that E[Ct] = tE[Z] = t

1+ε ,

and substituting t = 10 logn
ε , we get,

Pr[Ct ≥
20 log n

ε
] ≤ 1

n4

which proves Point 3.

References

[1] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal of Algorithms, 51(2):122–
144, 2004. 3

[2] Reinhard Kutzelnigg. Bipartite random graphs and cuckoo hashing. In Fourth Colloquium on
Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, pages
403–406. Discrete Mathematics and Theoretical Computer Science, 2006. 3.1

7

	Recap: Balls and Bins
	Concentration Bounds
	Cuckoo Hashing
	Analysis of Cuckoo Hashing

