
CS6841: Advanced Algorithms IIT Madras, Spring 2016
Lecture #4: Min-hash for estimating similarity, LSH January 27, 2016
Lecturer: Rajsekar Manokaran Scribe: Shreyas Shetty M

The previous lectures looked at hashing as a technique to build data structures that enable quick
insertion, lookup and deletion; ideally constant time. We explored variants of the basic hashing
algorithm. Notice that, the design goal in hashing was to hash the items as uniformly as possible. In
other words, we wanted to minimize the number of collisions, leading to the desired computational
effort (with high probability).

Today we look at the nearest neighbor problem in high dimensions and see how ideas from hashing
can lead to very useful practical results. The nearest neighbor problem is defined as follows, given
a collection of n points in Rd, build a data structure which, given any query point, reports the data
point that is closest to the query. This problem comes up in many areas, including machine learning,
pattern recognition, databases among others. The naive algorithm would be very inefficient and
would take linear time (in n). Several efficient algorithms are known when the dimension d is
low. However, traditional solutions suffer from either space or query time exponential in d. This is
usually referred to as the ”curse of dimensionality”. Researchers have come up with techniques to
get approximate answers. It turns out in practice, approximate nearest neighbors is as good as the
exact one. The main idea behind the techniques we discuss today is the following: hash items that
are “similar” to the same bucket. Use this information to then return the nearest neighbors. In
particular we look at Min-hash to measure similarity and then go on to Locality Sensitive Hashing
to solve the approximate nearest neighbor problem.

1 Model

Througout the lecture we will be talking about the representing a collection of n documents D,
and performing query operations on the collection. The documents are represented using the “Bag
of Words” model. A document is represented using a bit vector corresponding to a dictionary of
words. If W is the set of words in the language, a document d is represented as a bit string with
each position being 1 if the corresponding word is present in the document. Note that, we lose out
a lot of structural information about the document in this representation. It is remarkable that this
seemingly simplistic representation is still able to help answer the queries on documents (which to
a certain extent is subjective).

Formally, d ⊆ {0, 1}M , where |W | = M the number of words in the dictionary. We also want
to define a measure of similarity between two documents d1 and d2. There are multiple ways
of specifying this similarity. We consider Jaccard’s index of similarity and later we will consider
Hamming distance.

The Jaccard’s index of similarity between d1 and d2 is given by,

J(d1, d2) =
|d1 ∩ d2|
|d1 ∪ d2|

The similarity index J(d1, d2) ∈ [0, 1], similarity index being 0 if the documents are totally disim-
milar and 1 if they are similar.

1

Our goal is to design a data structure,

• To store n documents, (using some preprocessing)

• Query for similarity given input document d.

– Yes, if there exists a document d̃ such that, J(d, d̃) > 0.9

– No, if for all documents d̃ ∈ D, J(d, d̃) < 0.5.

Note that answers to the query are guaranteed with high probability.

We will modify these conditions for query outputs appropriately when we talk about Locality
Sensitive Hashing.

2 Min-hash for estimating similarity

Minhash is a technique for quickly measuring similarity between two documents (sets in general).
The minhash scheme was invented by Andrei Broder [Bro97]. Consider a hash function h : W →
[m]. Note that this function hashes the words and not the documents. We will define the specific
nature of this function h in next lemma. We define hmin(d) to be the hash for the document d.

hmin(d) = min
w∈d

h(w)

Lemma 4.1. Let H be a family of hash functions consiting the set of all permutations of W . Given
documents d1 and d2, we have

Pr
h←H

[hmin(d1) = hmin(d2)] = J(d1, d2)

Proof. We begin the proof by defining the notion of min-wise independence.

∀X ⊆W, ∀x ∈ X

Pr
h←H

[h(x) is the smallest among x ∈ X] =
1

|X|

It is easy to verify that H is a min-wise independent family.

Now consider, Prh←H[hmin(d1) = hmin(d2)]. This collision can happen only if any word the lies in
both the documents is the one that leads to hmin. However notice that hmin(d1), h

min(d2) can be
any one of the words from |d1 ∪ d2|. Combining these arguments we have,

Pr
h←H

[hmin(d1) = hmin(d2)] = J(d1, d2)

We will now apply this in a concrete setting.

Preprocessing

• Pick k hash functions h1, h2, . . . , hk and store them.

• For all d ∈ D, store hmin1 (d), hmin2 (d), . . . hmink (d).

2

Given an input document d,

• Compute hminj (d), for 1 ≤ j ≤ k

• Go over all the documents

– Yes, if atleast 0.9k of hmin collide with d.

– No, otherwise

Value of k.
Case 1
Case 1 refers to the scenario that there exists a document d̃ ∈ D such that J(d, d̃) > 0.9. Let us
fix d̃ such that J(d, d̃) > 0.9.

Pr
h←H

[hmin(d) = hmin(d̃)] ≥ 0.9

Define a random variable Yj such that,

Yj =

{
1 if hminj (d) = hminj (d̃)

0 otherwise

We now have, E[Yj] ≥ 0.9.

Pr
h←H

[∑Yj
k
≤ 0.9− ε

]
≤ e−ε2(0.9)k < 10−5 say

k ≥ 5 loge 10

0.9ε2

Case 2
Fix d̃ such that J(d, d̃) < 0.5.

Pr
h←H

[hmin(d) = hmin(d̃)] ≤ 0.5

Define a random variable Yj such that,

Yj =

{
1 if hminj (d) = hminj (d̃)

0 otherwise

We now have, E[Yj] ≥ 0.9.

Pr
h←H

[∑Yj
k
≥ 0.5 + ε

]
≤ e−ε2(0.5)k < 10−5 say

k ≥ 5 loge 10

0.5ε2

Fix a k that satisfies conditions from both Case 1 and Case 2.

Recall that, M is the size of the dictionary and n is the number of documents.
Space complexity: n logM +O(M logM)
Query time: O(n)
Known result There is no min-wise hash function such that size < O(M).

3

3 Locality Sensitive Hashing

Locality Sensitive Hashing (LSH) gives up on Jaccard as a measure of similarity. We use Hamming
distances instead. LSH was proposed by Piotr Indyk and Rajeev Motwani[IM98].

3.1 Model

We will be using the Bag of Words model as we did for Minhash. However, we will use Hamming
distance denoted by ∆(d1, d2) rather than, 1−J(d1, d2) as the distance measure. Hamming distance
is defined between two bitvectors d1 and d2.

∆(d1, d2) = |{w ∈W |w ∈ d1, w /∈ d2 or , w /∈ d1, w ∈ d2}|

Informally, the Hamming distance measures the number of words at which the two documents
differ.

Note that the Hamming distance forms a metric. We can verify that

• ∆(x, x) = 0

• ∆(x, y) ≥ 0

• ∆(x, y) ≤ ∆(x, z) + ∆(z, y)

Consider the notion of a Hamming Ball. A Hamming Ball B(q, r) centered at the query point q
with radius r is given by B(q, r) = {p : ∆(q, p) ≤ r}.
We will rewrite our original goals to account for the fact that Hamming distance is a measure of
distance and not similarity. On a query document d, return

• Yes, if there exists a document d̃ such that ∆(d̃, d) < R

• No, if for all documents d̃, ∆(d̃, d) > cR, c > 1

The following figure illustrates the idea regions of interest. Points that lie in within the inner ball
are “Yes” instances and the points that lie outside the outer ball are the “No” instances.

Figure 4.1: Hamming Ball

Our goal is to design a datastructure with O(n1−ε) query time and sub-quadratic storage.
4

Consider the hash family H = {hi : d→ di} for 1 ≤ i ≤M .

Now observe that,
Pr
h←H

[h(d1) = h(d2)] = 1−∆(d1, d2)

Note the slight abuse of notation here ∆(d1, d2) is the normalized hamming distance.

3.2 Hash Table Construction

Parameters: k, l

G =
{

(h1, h2, . . . , hk)
∣∣∣hi ← H}

The k hash functions are picked with replacement.

Pick and store g1, g2, . . . , gl from G. We maintain l hash tables and insert the documents into all
tables.

On an query with input d

• Compute g1(d), g2(d), . . . , gl(d)

• Set count = 0

• Go over the list for each gj(d).

– Collect all the points that mapped to gj(d).

– For each of the points, compute the distance from d to it. Increment counter if distance
< cR.

– Break on obtaining 10l matching points.

Time complexity O(kl).

Analysis
A family H is called (R, cR, p1, p2)-sensitive for any two points p, q ∈ Rd

• if ||p− q|| ≤ R then PrH[h(q) = h(p)] ≥ p1

• if ||p− q|| ≥ cR then PrH[h(q) = h(p)] ≤ p2

In order for the family H to be useful, it should satisfy p1 > p2.

We use the hash family H which contains all functions that project the input to one of its coordi-
nates.

H = {hi : {0, 1}M → {0, 1}|hi(p) = pi}

Notice that PrH[h(p) = h(q)] is equal to the number of positions in which p and q match. There-
fore, we have p1 = 1−R/M and p2 = 1− cR/M . Since, we have c > 1 notice that p1 > p2.

5

Case 1
Document (point) d̃ that is far, but mapped to the same bucket as d, with probability pk2. We set
this to be a small number say pk2 ≤ 1

n .

E[collision from outside the desired interval from D in any one of the l hash tables] ≤ 1

E[Number of collisions in the l tables] ≤ l

From Markov’s inequality we have,

Pr[Collisions ≥ 10l] ≤ 1

10

Therefore, with a low probability we have too many collisions.

Case 2
If there exists a document d̃ such that ∆(d, d̃) ≤ R, then

Pr[g(d) = g(d̃)] ≥ pk1

From pk2 ≤ 1/n we have, k ≤ log 1
p2

n.

We then have,

pk1 ≥ p
log 1

p2

n

1 = p
log 1

p1

n log 1
p2

1
p1

1 = n
− log 1

p2

1
p1

log 1
p2

1

p1
=

log 1
p1

log 1
p2

=
log p1
log p2

Let us assume that c = (1 + ε) with ε close to 0. From our discussion on the hash family we have
p1 = 1−R/M and p2 = 1− cR/M . Simplifying the above fraction gives us,

log p1
log p2

=
log(1− R

M)

log(1− R(1+ε)
M)

≈
R
M

R(1+ε)
M

≈ 1− ε

pk1 ≥ n−(1−ε)

We set l, the number of hash tables to l ≈ 100n1−ε. This gives us the desired run time of O(n1−ε)
and sub-quadratic storage.

More information on LSH can be found the Alexandr Andoni’s page. [And]

References

[And] Alexandr Andoni. Locality Sensitive Hashing (LSH) Home Page. http://www.mit.edu/

~andoni/LSH/. 3.2

[Bro97] Andrei Z Broder. On the resemblance and containment of documents. In Compression and
Complexity of Sequences 1997. Proceedings, pages 21–29. IEEE, 1997. 2

[IM98] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the
curse of dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory
of computing, pages 604–613. ACM, 1998. 3

6

http://www.mit.edu/~andoni/LSH/
http://www.mit.edu/~andoni/LSH/

	Model
	Min-hash for estimating similarity
	Locality Sensitive Hashing
	Model
	Hash Table Construction

