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1 Linear Programming

Linear program is an optimization problem over n variables x1, x2...xn with linear constraints and
a linear objective function which we aim to maximize or minimize. As an example, consider the
following.
Suppose we have n items, each item has ui grams of protein/kg and it’s cost is ci Rs/kg. Objective
is to minimize the cost wherein there is a requirement of B grams of protein. It can be modeled as
below.

Min
∑

cixi∑
uici ≤ B

xi ≥ 0 ∀i = 0, 1, 2...

There are various forms of LP. Two most common ones are general form and equational(standard) form.
The general form of LP is given as,

Min cTx

Ax ≥ B
where A is a m ∗ n matrix where each row in A corresponds to a given constraint and each column
is for one of the n variables. B is a m× 1 column matrix with Bi = bi. x is a n× 1 column vector
of n variables and c is the column vector such that ci = ci.
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c =


c1
c2
...
cn

 ; x =


x1
x2
...
xn

 ; b =


b1
b2
...
bm


such that 
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x1
x2
...
xn

 ≥

b1
b2
...
bm



such that when we expand this we get back,

a11x1 + a12x2 · · ·+ a1nxn ≥ b1
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a21x1 + a22x2 · · ·+ a2nxn ≥ b2
...

am1x1 + am2x2 · · ·+ amnxn ≥ bm
There are other ways to capture LP. For example, the objective function

Max cTx

can be written as
Min − cTx

And the two constraints given below are equivalent.∑
aijxj ≥ b⇐⇒ −

∑
aijxj ≤ −b

Therefore upper bound constraints are equivalent to lower bound constraints. Similarly,∑
aijxj = b⇐⇒

∑
aijxj ≤ b AND

∑
aijxj ≥ b

We can even write inequality constraints in terms of equality constraints by adding ”slack” variables.
One such example is shown below. Here si is the slack variable.

aix ≤ b⇔ aix+ si = b where si ≥ 0

In general form, the x′s can be unconstrained. That is x can take positive or negative values. If
we want to restrict our x such that all of them are non negative, we can do so by replacing each x
with x+ − x− where x+ ≥ 0 and x− ≥ 0.
To understand better we can verify it with a couple of examples.Suppose x = 5 in general form.
Then it can be written such that x+ = 5 and x− = 0. Suppose x = −2 in general form. Then,
x+ = 0 and x− = 2.
This brings us to another form of writing LP which is equational form. It is written as follows.

Min cTx

Ax = B

x ≥ 0

The equational form and general form of LP are equivalent. Trivially every equational form is also
a general form. The other way is also true. That is, we can write every general form constraint
using the above said techniques. i.e., every constraint in general form which is of the form

a1x1 + a2x2 · · ·+ anxn ≥ b

can be written as
a1x1 + a2x2 · · ·+ anxn − s = b AND s ≥ 0

For every variable in the general form replace xi with x+i − x
−
i

Why LP??

1. Generality - Many optimization problems are LPs or are very well approximated by LPs
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2. Efficient - In practice, LPs can be solved efficiently.

How to solve LPs
There are several ways of solving an LP. Simplex is a classic one which explores the basic feasible
solutions(further referred to as BFS) and improves the quantity we are trying to maximize(or
minimize) at every step of the way. We’ll see what a basic feasible solution means shortly. Before
that let’s set some basic concepts straight.
We view LPs in equational form and find optimal solution to the problem ”if one exists” or report
infeasibility. That is we find optimal solution for LP of the form

Min cTx

Ax = b

x ≥ 0

For example consider the set of constraints

x1 + 2x2 = 3

x1 + 7x5 = 7

0.5(x1 + 2x2) + 0.3(x1 + 7x5) = 3 ∗ 0.5 + 7 ∗ 0.3 + 1

Clearly, the above doesn’t have a solution as the constraints are inconsistent. Thus we gave an
example of how LPs can also be infeasible.
Now for LPs which are feasible, let’s look into the way to find basic feasible solution, which are
a special kind of feasible solutions. The definition of BFS is explained as we go along. Given the
matrix A in equational form, assume that rows of A are linearly independent. If the rows are
linearly dependent, some constraints are redundant and can be eliminated. We can use Gaussian
elimination technique to check that rows of A are linearly independent. So we have

rank(A) = # rows = m

Among n variables, choose m of them. Let’s call this set B. That is, B ⊂ [n] and |B| = m. Let
the matrix AB be an m×m matrix whose columns are picked from the matrix A be defined such
that each column in AB corresponds to the variable in B. For example, if B = x1, x3, x5 . . . then,
the submatrix AB is given by,

AB =


...

...
...

1 3 5 . . .
...

...
...


where each of the columns 1,3 and 5 are picked from the matrix A. Now solve for

ABXB = b

where XB contains variables only from B. Also assuming that AB’s columns are linearly indepen-
dent, AB would have a full rank and hence invertible. Then XB would have a unique solution,

XB = AB
−1b (8.1)

We can extend XB to include all n variables such that we set xi = 0 for variables which are not
in B. This vector X is called a basic solution. Note that X may have some negative numbers so
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it might not satisfy non negativity constraints. If X had all positive xi’s, then we call that basic
solution a basic feasible solution or BFS. We call B the basis. The algorithm to find BFS is as
given below.

Enumerate all B =

(
n

m

)
, such that the corresponding columns in A are linearly independent

SetXB = AB
−1b, extend to X, setting everything else to 0

Output the best solution

Why does this algorithm even work? What if there exists a solution to LP, but no BFS exists?
What if the optimum value is something other than the BFS we found? Thankfully we have a
theorem which answers our questions. It’s stated and proved below.

Theorem 8.1. For any LP in equational form, one of the following holds.

1. The LP is infeasible

2. The LP has unbounded optimum

3. The LP has an optimal solution x∗ which is a BFS

Proof. Suppose the LP is feasible and has a bounded optimum solution. Let x∗ be the optimal
solution with fewest number of non-zero components. Let P be the non-zero support in x∗. i.e,

P = {i|x̃i > 0}

[n]− P is all zero in x∗. There are two cases to consider.

1. The columns corresponding to the indices in P are linearly independent. i.e., the columns
of AP are independent. We know that A has rank m. Therefore size of P is at most m. We
can extend P to P̃ such that |P̃ | = m and columns of AP̃ are independent. We can think of

P̃ as B such that
AP̃XP̃ = b⇐⇒ ABXB = b

is got from BFS algorithm. We know that APX
∗
P = b(we assumed x∗ is the optimal solution).

From this we have AP̃X
∗
P̃

= b which we got from P̃ which we get by adding some 0 variables

back to P . We claim that XP̃ = X∗
P̃

because AP̃ is a full rank matrix(|P̃ | = m) and hence a
unique solution exists.

2. The columns of AP are linearly dependent. Then there exists some coefficients wi where
i ∈ P such that ∑

i∈P
wiAi = 0

By setting wi to zero for all i 6∈ P , we get w such that Aw = 0. We now want to show that
x∗ doesn’t have most zeros of all the optimal solutions. Suppose cTw = 0. Let x̃ = x∗ − εw.
Then

Ax̃ = Ax∗ −Aεw = 0

Then
cT x̃ = cTx∗ − cT εw = cT c∗

We’ll assume that w has some positive entries. If all are negative, we can set x̃ such that we
add εw to x∗. So as we increase ε, we are decreasing some of the positive entries in x̃ without
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changing the objective function. And at some some point if one of the coordinates become
zero, then x̃ will have one fewer non zero variable than x∗, contradicting to the fact that x∗

has the fewest non zero variables.
Now suppose cTw > 0. Consider x̃ = x∗ − εw. Then

Ax̃ = Ax∗ −Aεw = ax∗

Then
cT x̃ = cTx∗ − cT εw

x̃ ≥ 0 if ε is sufficiently small. But by the above equation, we can see that

cT x̃ < cTx∗

Which implies that x∗ is not the optimal solution, contrary to our assumption. Similarly if
cTw < 0, we can just negate all the entries of w to reduce to the case cTw > 0.

Duality of linear programs

Consider the following LP.
LP1 = min x1 + 2x2 + 4x3

x1 + x2 + 2x3 = 5

2x1 + x2 + 3x3 = 8

x1, x2, x3 ≥ 0

Let’s ask ourselves a question here. How small can OPT be for LP1? We can get this easily by
comparing the given constraints with the objective function.

Objective = x1 + 2x2 + 4x3 ≥ x1 + x2 + 2x3 = 5 =⇒ OPT (LP1) ≥ 5

Another important question is using the constraints of LP1 what is the best provable bound you
can show for OPT (LP1)? Suppose we have variables which represents a multiple of each term in
the constraints. Let’s call them y1 and y2 respectively for first and second constraint. Then,

x1(y1 + 2y2) + x2(y1 + y2) + x3(2y1 + 3y3) = 5y1 + 8y2

y1 + 2y2 ≤ 1

y1 + y2 ≤ 2

2y1 + 3y3 ≤ 4

And the problem of optimizing LP1 reduces to maximizing 5y1 + 8y2. That is,

OPT (LP1) ≥ 5y1 + 8y2

This is nothing but another LP, let’s call this LP2, which can be written as follows.

LP2 = max 5y1 + 8y2
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y1 + 2y2 ≤ 1

y1 + y2 ≤ 2

2y1 + 3y3 ≤ 4

We can see that any feasible solution to LP2 is a bound on OPT(LP1). LP1 is called a primal and
LP2 is called the dual of the primal LP.

Duality Theorem
The Duality Theorem tells us about the optimal values taken by a primal LP and its dual. Let
LP1 be a primal LP and LP2 be it’s dual.

Theorem 8.2. Weak Duality Theorem :
Let LP1 = min{cTx|Ax ≥ b, x ≥ 0} and LP2 = max{bT y|Ay ≤ c, y ≥ 0}. If x is a feasible solution
for LP1 and y is a feasible solution for LP2, then,

value(x, LP1) ≥ value(y, LP2)

Pictorially,

We can also say that if LP1 is unbounded then LP2 is infeasible and if LP2 is unbounded, LP1 is
infeasible.

Strong duality theorem says more about the optimal solutions about primal-dual pair.

Theorem 8.3. Strong Duality Theorem :
Let LP1 = min{cTx|Ax ≥ b, x ≥ 0} and LP2 = max{bT y|Ay ≤ c, y ≥ 0}. If LP1 and LP2 are both
feasible and bounded, then

value(x∗) = value(y∗)

where x∗ and y∗ are optimal values of LP1 and LP2 respectively.

That is both have same optimal solutions when both are bounded and feasible. Pictorially,

6



Below is the table of possibilities for the feasibility of LP1 and LP2

Note that the case where both primal and dual are infeasible is more of a corner case. An example
where both primal and dual are infeasible is,

max 2x1 − x2

x1 − x2 ≤ 1

−x1 + x2 ≤ −2

x1 ≥ 0, x2 ≥ 0

You can verify that both this LP and its dual is infeasible.
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