1 Classical Wine Bottle problem:

Given: 1000 wine bottles out of which one is poisoned.
Poisoned bottle can only be determined, if someone drinks in which results his/her death. You can mix two wine from two bottles and if any of the bottle is poisoned, the mixture becomes poisonous.
Goal:
To figureout the minimum number of people required to determine the poisoned bottle.
Trivial solution: 1000
Decision Tree Based Strategy:

- Divide 1000 in two groups of 500 each and give the first part to person-1.
- Divide both groups of 500 in two groups of 250 each, give first part of each group to person-2.
- Continue the same till the group had one bottle remaining.

In general, if there are N bottles of wine, and one of them is poisoned, $\lfloor\log N\rfloor+$ bottles are necessary (by counting argument) and $\lceil\log N\rceil$ are sufficient.It is easier to see this in matrix form.
$y=$ observed boolean vectors of illness of m people

$$
A=\left(\begin{array}{c}
\cdots A_{1} \cdots \\
\cdots A_{2} \cdots \\
\vdots \\
\cdots A_{m} \cdots
\end{array}\right)
$$

Input matrix for m people.
$y=A x$, where x is unknown vector with exactly one, rest are zero. So we observed that $i^{\text {th }}$ column of A if $X_{i}=1 X_{[n]-i}=0$.
Now, if k bottles were poisoned, the problem would be called Group Testing Problem.

- Main difficulty is that, we see only boolean outputs zero or non-zero; there is nothing to say how sick a person had fallen.
- For a moment, let us assume we can observe $y=A x$. Not just the boolean form but the exact value.
- We claim that recovery is possible as long as

$$
\sum_{i \in S} A_{i} \neq \sum_{i \in S^{\prime}} A_{i}
$$

for all S, S^{\prime} such that $S \neq S^{\prime}$ and $|S|=\left|S^{\prime}\right|=k$

Proof: Fix $S \neq S^{\prime}$
$\sum_{i \in S} A_{i}=\sum_{i \in S^{\prime}} A_{i} \Leftrightarrow \sum_{i \in S-S^{\prime}} A_{i}=\sum_{i \in S^{\prime}-S} A_{i}$
Therefore, $\operatorname{Pr}\left[\sum_{i \in S-S^{\prime}} A_{i}=\sum_{i \in S^{\prime}-S} A_{i}\right] \leq\left(\frac{1}{2}\right)^{m}$
$\operatorname{Pr}\left[\sum_{i \in S-S^{\prime}} A_{i}-\sum_{i \in S^{\prime}-S}=A_{i_{0}}\right] \leq\left(\frac{1}{2}\right)^{m}$

- Random A is a goal matrix, where $x \neq x^{\prime} \leftarrow A x=x^{\prime}$, for sparse x, x^{\prime}, given $A, y=A x$, find x.

2 Overview: Compressed sensing

Observations are expensive but computation is cheaper, inputs provided are sparse.
Question : We have here is, can we observe the input in compressed form and uniquely recover all sparse inputs?

Secondly, we also need efficient recovery algorithms.
Idea : Use LP Approach.
The goal is to recover x from $y=A x$. Recovery is not possible in general as x is not unique if $m<n$. But, from the input assumption, we want sparse set x.

Thus, minimize $\|X\|_{0}$ given $A x=y$, where x is a variable and y is a given observation. But this minimization or optimization problem is $N P$ - hard, because of its non-convex behavior. So, we relaxed to L_{1}.
Minimize $\|x\|_{1}, A x=y$

- L_{1} is solvable because it is aan $L P$.
- L_{1} is better than L_{2}, because a little deviation in the slope in L_{1} would change location drastically whereas not so in L_{2}.

3 Algorithm:Candy-Tao:

- Choose ϕ to be (δ, k) be RIP matrix. $\Rightarrow\left[\forall\|x\|_{2}=1\right.$,xisksparse $\left.1-\delta \leq\|\phi x\|_{2}^{2} \leq 1+\delta\right]$
- $y=\phi x$ is observed.
- $x^{*} \equiv \min _{\tilde{x}}\|x\|_{1}, \tilde{x}=y$
- Output x^{*}

Proof: Consider the error vector $h=x^{*}-x$,
we will show that $\|h\|_{2}=0$
Breakup the coordinates into disjoint sets $T_{0}, T_{1}, T_{2} \ldots$.
$T_{0}=k$ non-zero coordinates in the unknown x.
$T_{1}=k$ largest coordinates of $h_{[n]-T_{0}}$
$T_{2}=k$ largest coordinates of $h_{[n]-T_{0}-T_{1}}$
So, $h=\sum_{j \geq 0} h_{T j}$

Part-1: bound $\left\|h_{T_{2} \cup T_{3} \cup \ldots . .}\right\|_{2}$
$\left\|h_{T_{2}}\right\|_{2} \leq \sqrt{k}\left\|h_{T 2}\right\|_{\infty}$
$\left\|h_{T_{2}}\right\|_{2} \leq \frac{1}{\sqrt{k}}\left\|h_{T 2}\right\|_{1}$
$\left\|h_{T_{3}}\right\|_{2} \leq \frac{1}{\sqrt{k}}\left\|h_{T 2}\right\|_{1} \rightarrow A$
$\left\|h_{T_{0} \cup T_{1}}\right\|_{2} \leq \sum_{j \geq 2}\left\|h_{T j}\right\|_{2}$
$\left.\left\|h_{T_{0} \cup T_{1}}\right\|_{2} \leq \frac{1}{\sqrt{k}} \right\rvert\, h_{T_{1} \cup T_{2} \cup \ldots . .} \|_{1}$
$\left.\left\|h_{T_{0} \cup T_{1}}\right\|_{2} \leq \frac{1}{\sqrt{k}} \right\rvert\, h_{T_{0}^{c}} \|_{1}$
we optimize the $\left\|x^{*}\right\|_{1}$
$\left\|x^{*}\right\| \leq\|x\|_{1}$
$\Rightarrow\|x-h\|_{1} \leq\|x\|_{1}$
$\left\|(x-h)_{T_{0}}\right\|_{1}+\left\|(x-h)_{T_{o}^{c}}\right\|_{1} \leq\left\|x_{T_{0}}\right\|_{1}$
$\left\|x_{T_{0}}\right\|_{1}-\left\|h_{T_{0}}\right\|_{1}+\left\|h_{T_{0}^{c}}\right\|_{1} \leq\left\|x_{T 0}\right\|_{1}$
$\Rightarrow\left\|h_{T 0^{c}}\right\|_{1} \leq\left\|h_{T 0}\right\|_{1}$
$\left\|x_{T_{0}^{c}}\right\|_{1} \leq\left\|(x-h)_{T 0}\right\|_{1}+\left\|h_{T 0}\right\|_{1} \rightarrow B$
From A
$\left\|h_{T O \cup T 1}\right\|_{2} \leq \frac{1}{\sqrt{k}}\left\|h_{T_{0}^{c}}\right\|$
Part-2 :
Bound $\left\|h_{T_{0} \cup T_{1}}\right\|_{2}$
Use the $R I P$ property and use the property that ϕ is $(2 k-\delta) R I P$
$(1-\delta)\left\|h_{T_{0} \cup T_{1}}\right\|_{2}^{2} \leq\left\|\phi h_{T_{o} \cup T_{1}}\right\|_{2}^{2}$
$(1-\delta)\left\|h_{T_{0} \cup T_{1}}\right\|_{2}^{2}=\left\|\phi h_{T_{o} \cup T_{1}}, \phi h-\sum_{j \geq 2} \phi h_{T_{j}}\right\|$
$(1-\delta)\left\|h_{T_{0} \cup T_{1}}\right\|_{2}^{2}=\left(\phi h_{T_{0} \cup T_{1}},-\sum_{j \geq 2} \phi h_{T_{j}}\right)$ we need to bound this, notice that,
$4\left\langle\phi h_{T_{0}}, \phi h_{T_{j}}\right\rangle=\left\|\phi\left(h_{T_{0}}+h_{T_{j}}\right)\right\|_{2}^{2}-\left\|\phi\left(h_{T_{0}}-h_{T_{j}}\right)\right\|_{2}^{2}$
$4\left\langle\phi h_{T_{0}}, \phi h_{T_{j}}\right\rangle=4 \delta\left\|\left(h_{T_{0}}\right)\right\|_{2}\left\|h_{T_{j}}\right\|_{2}$
Overall we conclude that $\left|\left\langle\phi h_{T_{0}},-\sum_{j \geq 2} \phi h_{T j}\right\rangle\right| \leq \delta\left\|h_{T_{0}}\right\|_{2} \sum_{j \geq 2}\left\|h_{T_{j}}\right\|$
$\left|\left\langle\phi h_{T_{0}},-\sum_{j \geq 2} \phi h_{T j}\right\rangle\right| \leq \delta| | h-T_{0} \cup T_{1} \|_{2}$
Similarly for T_{1}

$$
\begin{aligned}
& \left\langle h_{T_{1}}, \sum_{j \geq 2} \phi h_{T_{j}}\right\rangle \\
& \mid\left\langle h_{T_{0} \cup T_{1}}, \sum_{j \geq 2} \phi h_{T_{j}}\right\rangle \leq 2 \delta\left\|h_{T_{0} \cup T_{1}}\right\|_{2} \sum_{j \geq 2}\left\|h_{T_{j}}\right\|_{2} \\
& \Rightarrow(1-\delta)\left\|h_{T_{0} \cup T_{1}}\right\|_{2}^{2} \leq 2 \delta\left\|h_{T 0 \cup T_{1}}\right\|_{2} \sum_{j \geq 2}\left\|h_{T_{j}}\right\|_{2} \\
& \Rightarrow(1-\delta)\left\|h_{T_{0} \cup T_{1}}\right\|_{2}^{2} \leq 2 \delta\left\|h_{T_{0} \cup T_{1}}\right\|_{2} \frac{1}{\sqrt{k}}\left\|h_{T_{0}}\right\|_{1} \\
& \Rightarrow\left\|h_{T_{0} \cup T_{1}}\right\|_{2}^{2} \leq \frac{2 \delta}{1-\delta} \frac{1}{\sqrt{k}}\left\|h_{T_{0}}\right\|_{1} \\
& \Rightarrow\left\|h_{T_{0} \cup T_{1}}\right\|_{2}^{2} \leq \frac{2 \delta}{1-\delta} \frac{1}{\sqrt{k}} \sqrt{k}\left\|h_{T_{0}}\right\|_{2} \\
& \Rightarrow(1-\delta)\left\|h_{T_{0} \cup T_{1}}\right\|_{2} \leq 2 \delta\left\|h_{T_{0} \cup T_{1}}\right\|_{2}
\end{aligned}
$$

$\Rightarrow(1-\delta)\left\|h_{T_{0} \cup T_{1}}\right\|_{2} \leq 0$
$\Rightarrow\left\|h_{T_{0} \cup T_{1}}\right\|_{2}=0\left(\delta<\frac{1}{3}\right)$
$\Rightarrow h=0$
Hence the proof

4 How to desigh good RIP matrices ?

$\phi \in R^{m n}$ is (δ, k) RIP if $(1-\delta) \leq\|\phi x\|_{2}^{2}$
$(1-\delta) \leq(1+\delta)$

5 Reconstruction of Johnson-Linderstrauss lemma:

like JL but for all K sparse vectors.

$$
\phi=\left(\begin{array}{l}
\cdots g_{1} \cdots \\
\cdots g_{2} \cdots \\
\cdots g_{3} \cdots
\end{array}\right)
$$

$\phi=\left[g_{i j}\right]$, where $\left[g_{i j}\right]=N(0,1)$ be a random varible.

- Fix $x \in R^{n}$, where x is a k sparse matrix, $\|x\|_{2}=1$
- Show that with high probability $\|\phi x\|_{2}^{2} \approx 1 \pm \delta$
- Union bound overall $x,\left\|x_{0}\right\|_{0} \leq K,\left\|x_{1}\right\|_{2}=1$

$$
y=\phi x=\left(\begin{array}{c}
\cdots g_{1} \cdots \\
\cdots g_{2} \cdots \\
\vdots \\
\cdots g_{m} \cdots
\end{array}\right)
$$

$y=\sum_{j=1}^{k} g_{i j} x_{j}$
Each $g_{i j}$ is $N(0,1)$
if Z is $N(0,1)$ then αZ is $N\left(0, \alpha^{2}\right)$

$$
y=\left(\begin{array}{c}
\cdots N(0,1) \cdots \\
\cdots N(0,1) \cdots \\
\vdots \\
\cdots N(0,1) \cdots
\end{array}\right)
$$

$E\left[\|y\|^{2}\right]=E\left[\sum y_{i^{2}}\right]$
$E\left[\|y\|^{2}\right]=\sum E\left[y_{i^{2}}\right]$
$E\left[\|y\|^{2}\right]=m$
$R=\left\|y^{2}\right\|$ is a random variable.
$E[R]=m$
$\operatorname{var}[R]=E\left[R^{2}\right]-E[R]^{2} \leq \mathcal{O}(m)$

6 Bernstein's Inequality:

$\operatorname{Pr}[|R-M|>t \sqrt{m}] \leq e^{-t^{2}}$
Set $t=\epsilon \sqrt{m}$
$\operatorname{Pr}[|R-M|>\epsilon m] \leq e^{-\epsilon^{2} m}$
for fixed $u, w p \geq 1-\epsilon^{2} m,\|\phi u\|_{2}^{2} \in(1 \pm \epsilon)^{m}$
$\forall R$ sparse vectors, the length to be preserved.
Morally, number of vectors to union bound over

$$
\leq\binom{ n}{k} o(1)^{k}=n^{o(k)}
$$

if $e^{-\epsilon^{2} m} \cdot n^{o(k)}<\frac{1}{2}$ this is the overall probability.
We have to show that $m=\theta(k \log n)$ suffices.
\rightarrow How to bound over infinitely many vectors?
Fix h coordinates as $1,2,3, \ldots . \mathrm{k}$ WLOG there are infinitely many unit vectors $\|x\|=1$ $X=x: \sum_{i=1}^{k} x_{i}^{2}=1$ are unit vectors.
Find a small set N such that $\forall x \in X, \exists n \in N$ such that $d(x, N)>\epsilon$

7 How small N can be?

Greedy ϵ - net, start with an arbitrary x_{0}, add to N, as long as $\exists x \in X$ such that $d(x, N)>\epsilon$, add x to N.
$\forall n_{1}, n_{2} \in N$, we have $\left\|n_{1}-n_{2}\right\|_{2}>\epsilon$
$\Rightarrow B\left[n_{i}, \frac{\epsilon}{2}\right] n\left[n_{j}, \frac{\epsilon}{2}\right]=\phi, \forall i, j \in N$
Moreover, $N \subset X$, all points are in unit ball $B(0,1)$ Number of net points,

$$
|N| \leq \frac{\text { volume }(B(0,1))}{\text { volume }\left(B\left(\frac{\epsilon}{2}\right)\right)}
$$

is directly proportional to $\left(\frac{2}{\epsilon}\right)^{2}$. Volume is directly proportional to r^{k} in k-d space. Now we show that all points in N are good for ϕ that means $\forall n \in N$.
$1-\frac{\delta}{2} \leq\|\phi n\|_{2}^{2} \leq 1+\frac{\delta}{2}$
Union bound as long as $e^{-\epsilon^{2} m} \cdot\binom{n}{k}\left(\frac{2}{\epsilon}\right)^{k}<\frac{1}{2}$
if ϕ is $1 \pm \frac{\delta}{2}$ is good for N, will show ϕ is good for X also
ExtremalityArgument let $1+A$ be the largest distortion for ϕ, meaning $\exists \tilde{x}$ such that $\|\phi \tilde{x}\|_{2} \leq \frac{\delta}{4}$.
We want to bound A
$\exists \tilde{n} \in N$ such that $\|(\tilde{x}-\tilde{n})\|_{2} \leq \frac{\delta}{4}$

$$
\|\phi \tilde{x}\|_{2}=1+A=\left\|\phi n^{2}+\phi(\tilde{x}-\tilde{n})\right\|_{2} \leq\left\|\phi n_{2}\right\|_{2}+\| \phi\left(\tilde{x}-\tilde{n} \|_{2}\right.
$$

$$
\begin{aligned}
& (1+A) \leq 1+\frac{\delta}{2}+\frac{\delta}{4}+\frac{\delta}{4}(1+A) \\
& A \leq \frac{\delta}{2}+\frac{\delta}{4}+\frac{A \delta}{4} \\
& A\left(1-\frac{\delta}{4} \leq \frac{3 \delta}{4}\right. \\
& A \leq \delta
\end{aligned}
$$

$\therefore \phi$ is δ good for all points.

