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1 Classical Wine Bottle problem:

Given: 1000 wine bottles out of which one is poisoned.

Poisoned bottle can only be determined, if someone drinks in which results his/her death. You can
mix two wine from two bottles and if any of the bottle is poisoned, the mixture becomes poisonous.

Goal:

To figureout the minimum number of people required to determine the poisoned bottle.

Trivial solution: 1000

Decision Tree Based Strategy:

• Divide 1000 in two groups of 500 each and give the first part to person-1.

• Divide both groups of 500 in two groups of 250 each, give first part of each group to person-2.

• Continue the same till the group had one bottle remaining.

In general, if there areN bottles of wine, and one of them is poisoned, ⌊logN⌋+ bottles are necessary
(by counting argument) and ⌈logN⌉ are sufficient.It is easier to see this in matrix form.

y = observed boolean vectors of illness of m people

A =


· · ·A1 · · ·
· · ·A2 · · ·

...
· · ·Am · · ·


Input matrix for m people.

y = Ax, where x is unknown vector with exactly one, rest are zero. So we observed that ith column
of A if Xi = 1 X[n]−i =0.

Now, if k bottles were poisoned, the problem would be called Group Testing Problem.

• Main difficulty is that, we see only boolean outputs zero or non-zero; there is nothing to say
how sick a person had fallen.

• For a moment, let us assume we can observe y = Ax. Not just the boolean form but the
exact value.

• We claim that recovery is possible as long as∑
i∈S Ai ̸=

∑
i∈S′Ai

for all S, S′ such that S ̸= S′ and |S|= |S′|= k
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Proof : Fix S ̸= S′∑
i∈S Ai =

∑
i∈S′Ai ⇔

∑
i∈S−S′Ai =

∑
i∈S′−S

Ai

Therefore, Pr[
∑

i∈S−S′Ai =
∑

i∈S′−S
Ai] ≤ (12)

m

Pr[
∑

i∈S−S′Ai −
∑

i∈S′−S
= Ai0 ] ≤ (12)

m

• Random A is a goal matrix, where x ̸= x′← Ax = x′, for sparse x, x′, given A, y = Ax, find
x.

2 Overview: Compressed sensing

Observations are expensive but computation is cheaper, inputs provided are sparse.

Question : We have here is, can we observe the input in compressed form and uniquely recover all
sparse inputs?

Secondly, we also need efficient recovery algorithms.

Idea : Use LP Approach.

The goal is to recover x from y = Ax. Recovery is not possible in general as x is not unique if
m < n. But, from the input assumption, we want sparse set x.

Thus, minimize ||X||0 given Ax = y, where x is a variable and y is a given observation. But this
minimization or optimization problem is NP − hard, because of its non-convex behavior. So, we
relaxed to L1.

Minimize ||x||1, Ax = y

• L1 is solvable because it is aan LP .

• L1 is better than L2, because a little deviation in the slope in L1 would change location
drastically whereas not so in L2.

3 Algorithm:Candy-Tao:

• Choose ϕ to be (δ, k) be RIP matrix. ⇒ [∀||x||2= 1,xisksparse1− δ ≤ ||ϕx||22≤ 1 + δ]

• y = ϕx is observed.

• x∗ ≡ minx̃||x||1, x̃ = y

• Output x∗

Proof : Consider the error vector h = x∗ − x,

we will show that ||h||2= 0

Breakup the coordinates into disjoint sets T0, T1, T2....

T0= k non-zero coordinates in the unknown x.

T1 = k largest coordinates of h[n]−T0

T2 = k largest coordinates of h[n]−T0−T1

So, h =
∑

j≥0 hTj
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Part− 1 : bound ||hT2∪T3∪....||2
||hT2 ||2≤

√
k||hT2||∞

||hT2 ||2≤ 1√
k
||hT2||1

||hT3 ||2≤ 1√
k
||hT2||1 → A

||hT0∪T1 ||2≤
∑

j≥2||hTj ||2
||hT0∪T1 ||2≤ 1√

k
|hT1∪T2∪....||1

||hT0∪T1 ||2≤ 1√
k
|hT c

0
||1

we optimize the ||x∗||1
||x∗||≤ ||x||1
⇒ ||x− h||1≤ ||x||1
||(x− h)T0 ||1+||(x− h)T c

o
||1≤ ||xT0 ||1

||xT0 ||1−||hT0 ||1+||hT c
0
||1≤ ||xT0||1

⇒ ||hT0c ||1≤ ||hT0||1
||xT c

0
||1≤ ||(x− h)T0||1+||hT0||1 → B

From A

||hT0∪T1||2≤ 1√
k
||hT c

0
||

Part− 2 :

Bound ||hT0∪T1 ||2
Use the RIP property and use the property that ϕ is (2k − δ)RIP

(1− δ)||hT0∪T1 ||22≤ ||ϕhTo∪T1 ||22
(1− δ)||hT0∪T1 ||22= ||ϕhTo∪T1 , ϕh−

∑
j≥2 ϕhTj ||

(1− δ)||hT0∪T1 ||22= (ϕhT0∪T1 ,−
∑

j≥2 ϕhTj) we need to bound this, notice that,

4⟨ϕhT0 , ϕhTj ⟩ = ||ϕ(hT0 + hTj )||22−||ϕ(hT0 − hTj )||22
4⟨ϕhT0 , ϕhTj ⟩ = 4δ ||(hT0)||2||hTj ||2
Overall we conclude that |⟨ϕhT0 ,−

∑
j≥2 ϕhTj⟩|≤ δ||hT0 ||2

∑
j≥2||hTj ||

|⟨ϕhT0 ,−
∑

j≥2 ϕhTj⟩|≤ δ||h− T0 ∪ T1||2
Similarly for T1

⟨hT1 ,
∑

j≥2 ϕhTj ⟩
|⟨hT0∪T1 ,

∑
j≥2 ϕhTj ⟩|≤ 2δ||hT0∪T1 ||2

∑
j≥2||hTj ||2

⇒ (1− δ)||hT0∪T1 ||22≤ 2δ||hT0∪T1 ||2
∑

j≥2||hTj ||2
⇒ (1− δ)||hT0∪T1 ||22≤ 2δ||hT0∪T1 ||2 1√

k
||hT0 ||1

⇒ ||hT0∪T1 ||22≤ 2δ
1−δ

1√
k
||hT0 ||1

⇒ ||hT0∪T1 ||22≤ 2δ
1−δ

1√
k

√
k||hT0 ||2

⇒ (1− δ)||hT0∪T1 ||2≤ 2δ||hT0∪T1 ||2
3



⇒ (1− δ)||hT0∪T1 ||2≤ 0

⇒ ||hT0∪T1 ||2= 0(δ < 1
3)

⇒ h = 0

Hence the proof

4 How to desigh good RIP matrices ?

ϕ ∈ Rmn is (δ, k) RIP if (1− δ) ≤ ||ϕx||22
(1− δ) ≤ (1 + δ)

5 Reconstruction of Johnson-Linderstrauss lemma:

like JL but for all K sparse vectors.

ϕ =

· · · g1 · · ·· · · g2 · · ·
· · · g3 · · ·


ϕ = [gij ] , where [gij ] = N(0, 1) be a random varible.

• Fix x ∈ Rn, where x is a k sparse matrix, ||x||2= 1

• Show that with high probability ||ϕx||22≈ 1± δ

• Union bound overall x, ||x0||0≤ K, ||x1||2= 1

y = ϕx =


· · · g1 · · ·
· · · g2 · · ·

...
· · · gm · · ·


y =

∑k
j=1 gijxj

Each gij is N(0, 1)

if Z is N(0, 1) then αZ is N(0, α2)

y =


· · ·N(0, 1) · · ·
· · ·N(0, 1) · · ·

...
· · ·N(0, 1) · · ·


E[||y||2] = E[

∑
yi2 ]

E[||y||2] =
∑

E[yi2 ]

E[||y||2] = m

R = ||y2|| is a random variable.

E[R] = m

var[R] = E[R2]− E[R]2 ≤ O(m)
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6 Bernstein’s Inequality:

Pr[|R−M |> t
√
m] ≤ e−t2

Set t = ϵ
√
m

Pr[|R−M |> ϵm] ≤ e−ϵ2m

for fixed u, wp ≥ 1− ϵ2m, ||ϕu||22∈ (1± ϵ)m

∀R sparse vectors, the length to be preserved.

Morally, number of vectors to union bound over

≤
(
n

k

)
o(1)k = no(k)

if e−ϵ2m.no(k) < 1
2 this is the overall probability.

We have to show that m = θ(k log n) suffices.

→ How to bound over infinitely many vectors?

Fix h coordinates as 1,2,3,.... k WLOG there are infinitely many unit vectors ||x||= 1

X = x :
∑k

i=1 x
2
i = 1 are unit vectors.

Find a small set N such that ∀x ∈ X, ∃n ∈ N such that d(x,N) > ϵ

7 How small N can be?

Greedy ϵ - net, start with an arbitrary x0, add to N , as long as ∃x ∈ X such that d(x,N) > ϵ,
add x to N .

∀n1, n2 ∈ N , we have ||n1 − n2||2> ϵ

⇒ B[ni,
ϵ
2 ]n[nj ,

ϵ
2 ] = ϕ, ∀i, j ∈ N

Moreover, N ⊂ X, all points are in unit ball B(0, 1) Number of net points,

|N |≤ volume(B(0, 1))

volume(B( ϵ2))

is directly proportional to (2ϵ )
2. Volume is directly proportional to rk in k-d space. Now we

show that all points in N are good for ϕ that means ∀n ∈ N .

1− δ
2 ≤ ||ϕn||

2
2≤ 1 + δ

2

Union bound as long as e−ϵ2m .
(
n
k

)
(2ϵ )

k < 1
2

if ϕ is 1± δ
2 is good for N , will show ϕ is good for X also

ExtremalityArgument let 1 + A be the largest distortion for ϕ , meaning ∃x̃ such that
||ϕx̃||2≤ δ

4 .

We want to bound A

∃ñ ∈ N such that ||(x̃− ñ)||2≤ δ
4

||ϕx̃||2= 1 +A = ||ϕn2 + ϕ(x̃− ñ)||2≤ ||ϕn2||2+||ϕ(x̃− ñ||2
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(1 +A) ≤ 1 + δ
2 + δ

4 + δ
4(1 +A)

A ≤ δ
2 + δ

4 + Aδ
4

A(1− δ
4 ≤

3δ
4

A ≤ δ

∴ ϕ is δ good for all points.
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