
CS6841: Advanced Algorithms IIT Madras, Spring 2016
Lecture #21: Set Cover and Introduction to Online Routing March 30, 2016
Lecturer: Ravishankar Krishnaswamy Scribe: Arinjita Paul

1 Recap

In our last class, we discussed the Online Set Cover Algorithm. The Online Set Cover model is as
follows :

• U is the huge universe of possible elements.The algorithm knows the universe ahead of time.

• S is the collection of sets whose union is the universe . m is the number of sets.

• X ⊆ U is a small subset of the universe which is the online set of elements that needs to be
covered, revealed over time. We have |X| = n.

• The algorithm has to pick a set SA ⊆ S which is the online set cover for X.

Consider that the sequence of elements arriving over time are e1, e2, · · · en, where |X| = n.
So, when e1 arrives, the algorithm has to include a subset ∈ S to cover the element, without
prior knowledge of the future elements.

• Goal of the algorithm : to minimise the competitive ratio, that is , precisely to pick the
minimum number of sets that cover X.

Competitive Ratio = (max over all possible input X)

(
#sets chosen by the online algorithmfor inputX

Optimal# sets needed for X

)
We discussed two candidate algorithms as follows:

1. Greedy Algorithm : A candidate greedy algorithm was proposed, which picked the largest
set to cover an element. A set was chosen with the maximum cardinality, without checking
how useful the set is. We discussed in the previous lecture as to why this approach was a bad
choice.

2. Fractional Algorithm : We discussed a Fractional Algorithm which was Multiplicative-
Weights inspired, where we maintained a utility(or confidence) of sets and everytime an
element arrived, we increased the confidence of the sets based on their past usefulness. This
algorithm had two parts. In one part, we solved the fractional algorithm which maintained
the confidence of the sets and in the other, we applied the rounding algorithm to get integer
solution.

2 Solving the Online Fractional Algorithm and Online Rounding
Scheme

Here, we are going to first create an online fractional algorithm and then provide the online rounding
scheme.

1

Online Fractional Algorithm

I We maintain fractional assignments for all
sets in S.

Say, for instance,the fractional solution is
covering the arrived element e1 with 3 sets
S1, S2, S3 in S. So, the fractional assign-
ments are as xS1 = 0.5 , xS2 = 0.3 ,
xS3 = 0.2.

I These fractional assignments are updated
monotonically over time as the new ele-
ments arrive.

I Example:

→ Element e1 arrives.

The algorithm tries to cover it using
the three sets. So, we have xS1 = 0.5,
xS2=0.3, xS3=0.2 .

→ Element e2 arrives.

So, our updated values for the sets
are now xS1 = 0.8, xS2 = 0.9 and
xS3 = 0.2.

I Also, from the online nature of the algo-
rithm,we cannot delete the sets already in-
cluded in the set cover.(This can be mo-
tivated from the Airtel cell tower example
discussed in the last class, where once a
cell tower is installed in a location, it later
cannot be uninstalled as Airtel has already
paid funds to build the tower.)

Online Rounding Scheme

I We try to round the factional solution on-
line after maintaining the fractional assign-
ments for the sets online. We make sure
that a given set, say S1 is included with
probability ∝ xS1

I The algorithm maintains the invariant that
at any time, every set is chosen in the solu-
tion with probability = c.xSi (the current
fractional assignment).

I Example:

(We refer to the same example as used in
the Fractional Algorithm) When element
e1 arrives and the fractional assignment is
done for the sets S1, S2, S3:-

→ We include set S1 with probability
∝ c.xS1 .

→ We include set S2 with probability
∝ c.xS2 .

→ We include set S3 with probability
∝ c.xS3 .

So, for each set, the algorithm ran-
domly tosses coins with the probabil-
ity c.xS2 , and includes those sets to
the solution.

When element e2 arrives:-

Now, the sets will be included with the dif-
ference probability as below:

→ We include set S1 with probability ∝
c.∆xS1 , where ∆xS1 is 0.8−0.5 = 0.3.

→ We include set S2 with probability ∝
c.∆xS2 , where ∆xS2 is 0.9−0.3 = 0.6.

→ We include set S3 with probability
∝ c.∆xS3 .

2

We discuss two theorems here.

Theorem 21.1. There exists an online algorithm for maintaining fractional solutions such that
the cost of fractional solution ≤ O(logm).OPT . That is :

∑
x
(t)
S ≤ O(logm)OPT (t)

This indicates that every time for every set of elements that arrive, the fractional cost is always less
than or equals O(logm)OPT (t). OPT (t) is the optimal set cover of the elements that have arrived
till time t.

Theorem 21.2. There is a rounding scheme to select sets(based on the fractional solution), such
that at any time t:

E[
∑
Z

(t)
S] ≤ O(logn)

∑
x
(t)
S

Here Z is the indicator variable for whether S has been rounded or not.

Our algorithm first maintains a fractional solution online and second, round the fractional solution
to get a good integer solution, also done online.So, putting both the theorems Theorem 21.1 and
Theorem 21.2 together, we get:

E[Cost of Online Algorithm] ≤ O(logm.logn).OPT (t).

Here, m denotes the number of sets and n denotes the number of elements that show up in our
online algorithm = |X|.
So, for any time t, the inequality holds good,which essentially shows that the competitive ratio is
low. This shows that, no matter what the sequence is, the cost of our online algorithm divided by
the cost of the optimal solution for that same sequence is atmost a small factor O(logm.logn).

We first discuss the online Fractional Algorithm and then provide a proof for Theorem 21.1.

2.1 Online Fractional Algorithm

The steps for our online algorithm are as follows:

We initialise all sets to x
(0)
s = 1

m , where m is the number of sets. Also,
∑
x
(0)
s = 1.

When a new element et arrives,

while(
∑

S:et∈S xs < 1)

update xs = 2xs if s covers e (∀S : et ∈ S).

endwhile

So, the algorithm looks at the sets that cover the element et. If some fractional set already covers
it, then we are done. Else the algorithm enters the while loop and double-set values for only those
that cover et. So, the resulting {xS} values form a fractional solution at time t, called xt. Note
that if a set is useful for many elements, its value increases rapidly, as discussed in the previous
class.There is a geometrical increase in value for the repeatedly useful sets, as below:

3

1
m →

2
m →

4
m → · · · 2.

So, atmost O(logm) times, a set can participate in the doubling set algorithm.

We now prove Theorem 21.1 which says that the fractional cost of online algorithm at time t
over all the sets is atmost O(logm).OPT (t). by constructing the LP primal and dual as below.

Proof. We construct the LP primal and dual for the set cover problem as below:

Primal

Min
∑
xS

subject to:∑
S:e∈S xs ≥ 1, ∀e1, e2, · · · et

Dual

Max
∑
ye

subject to:∑
e∈S ye ≤ 1, ∀s ∈ S.

To show Theorem 1, we show Lemma 1.

Lemma 1: We construct a feasible dual solution {ỹte} such that:∑
xts ≤ O(logm).

∑
e ỹ

t
e ≤ O(logm)OPT (t).

Here
∑
xts is the online fractional cost for our algorithm.So, we want to relate our algorithm to the

optimal cost using duality.

2.2 Weak Duality

So, the Primal is a minimisation problem, trying to get as low cost as possible. We denote the real
optimal offline solution (feasible to the primal LP) as OPT (t) as is shown in Figure 21.1 below.And
our optimal LP solution for primal will only be smaller than the real optimal solution as LP is a
relaxation of the real integer constraint.And by the strong duality theorem, the optimal dual and
the optimal primal are equal.Our feasible dual is {ỹe} as shown in the figure,and the dual problem
is a maximisation problem. So, if we find a feasible dual solution, it will only be lesser than the
actual optimal dual solution, which is again less than the real integer optimal solution.So, if we
can show that our primal solution is atmost (logm) times our constructed dual solution,then by
duality,our primal solution is atmost (logm) times our actual optimal solution. So, here we are
bounding the optimal solution using the constructed feasible dual solution.

Figure 21.1: Weak Duality

Now we prove Lemma 1:
4

Proof. Now, how do we construct the dual? Constructing the dual has a two fold goal.

• The dual should be feasible

• The dual should help us bound the cost of the online algorithm

We reconsider the online algorithm to see how we could construct the dual from it.In the algorithm,
we increase the cost whenever it enters the while loop, that is , the overall cost increases.Also, we
enter the while loop when the element is not fractionally covered.The question is, how much can
this cost increase be in a single iteration of the while loop?

Consider an example where there is an element e, which is covered by 3 sets with their fractional
assignments as given as shown in Figure 21.2:

Figure 21.2: Example to show increase in Fractional Assignment in a single while loop iteration

So, initially, we have
∑

S covering e xS = 0.8.So, now while loop is entered and xS doubles, and
overall new solution has

∑
S covering e xS = 1.6. Also, note that no other xS was increased, as we

considered only the useful sets covering this current element e.So, overall fractional increase = 0.8
(in a single iteration for this example).

Claim 1: In any iteration, fractional cost increases by ≤ 1.

Using this intuition, for every while loop iteration, for the element e that caused the iteration, we
increase the total objective function by 1: ye → ye + 1 ,and at the same time the fractional cost
incurred by our algorithm increases by atmost 1.

Let {ỹte} denote final dual variables.

By design,the final fractional cost =
∑
xts ≤

∑
e ỹ

t
e. However, it may also happen that the dual

solution may not be feasible.So, some ye can be > 1 (y becomes 2 on increasing twice), and the
point we need to worry about here is that the dual is subject to the constraint that

∑
e∈S ye ≤ 1.So,

it may not be true that
∑

e∈S ỹ
t
e ≤ 1, ∀S.

So, we here determine that how much can this be over-violated. The saving grace is that the
constraint wont be violated too much. Infact , we claim the following:

Claim 2:
∑

e∈S ỹ
t
e ≤ (logm+ 1), ∀S.

Proof. So, we fix a set S and look at all the iterations which increased the LHS
∑

e∈S ỹ
t
e.The common

property of all the iterations that increases the LHS is that, S must be covering the current element
that caused the iteration.Also, in each such iteration, xs value (≤ 2) is doubled.And we have already
seen earlier that if xS value exceeds 1,there wont be any further iterations for elements that are
covered by S.

So, we have 1
m →

2
m →

4
m → · · ·

m
m →

2m
m

5

So, number of iterations = logm + 1.

So, we have seen that our fractional cost at any time t =
∑

all sets x
t
s ≤

∑
e ỹ

t
e. · · · · · · (a)

Also, note that the fractional solution { ỹte
logm+1} is feasible for the dual program, as it satisfies all

the constraints.· · · · · · (b)
Hence (a) and (b) together implies that our fractional cost is atmost (logm + 1) times the cost of
feasible fractional dual solution . This implies our Lemma 1 and in turn proves Theorem 21.1.

3 Summary

X So, our online algorithm is Multiplicative Weight inspired (more aggressive for more useful
sets historically, rapidly increasing confidence for repeatedly useful sets).

X To show that our algorithm works, we used a dual based analysis. We analysed algorithm
cost versus dual solution constructed (upto O(logm)).

X Duality implies that dual optimum ≤ Real set cover.

4 Analysis of Online Rounding Algorithm

Whenever fractional variables double, our rounding algorithm tosses coins and includes those sets
randomly.We illustrate the online rounding algorithm with the example below in Figure 21.3:

Figure 21.3: Example to illustrate Rounding Algorithm

At time t, Probability[set S is included by now] = c.xts, which is the fractional assignment.Now, we
consider any element that arrived already, and we claim that:

E[# sets in my rounded solution which covers e] ≥ C.[xts] ≥ C.
6

Our rounding algorithm ensures that every element is covered atleast C times in expectation. Also
note that:

E[cost of rounding solution] = c.
∑

all sets S x
t
s

So, since we are doing independent roundings, we apply Chernoff bounds:-

Probability[a fixed element which has arrived is not covered by rounding solution] ≤ e−c .

So, if we set c = 2logn, the above probability = 1
n2 . Thus, we see that our rounding algorithm has a

very small probability that it will not cover an element that arrived. This implies Theorem 21.2
that the above rounding algorithm maintains an online set cover , such that, at time t, it covers all

elements with probability 1− 1
n and has expected cost ≤ O(logn).

∑
x
(t)
s .

5 Lower Bound Example

We show that no online algorithm can do better than some α factor.So, consider the following
instance.

• We have a huge universe of elements.U = {e1, e2, · · · eL}. L = l2.

• S = all possible l-sized subsets of U; |S| =
(
L
l

)
We now provide a bad input sequence to the algorithm:

We present e1, and algorithm chooses S1 → e1.

Again, we present e2 not in S1, so that forces the algorithm to choose a new set, say s2.

Now,we present e3 not in s1 or s2, so that again forces the algorithm to choose new set, say s3.

Similarly, continue and we finally present el not in s1, s2, · · · sl−1, so that forces the algorithm to
choose new set, say sl.

So, overall, the algorithm cost = l as l sets are picked,whereas the optimum cost for {e1, e2, · · · el} =
1(as S must definitely have one such subset covering the elements.This means, the competitive ratio
is as bad as l.

In offline set cover, if we knew all the elements ahead of time, the randomised rounding algorithm
had a performance of ≤ O(logn). Notice that, in the above example,l is worse than (logn) , where
gap = l = Ω(n).Hence there is a huge gap between online and offline set cover.

6 Online Routing

Consider we have a large graph G with unit capacities on edges.We can simulate high capacities by
parallel links between nodes.We have online requests arriving, where a request is : a source vertex,
destination vertex and their unit bandwidth requirement.

Goal of the algorithm is :

→ to fix a path to route the bandwidth, which we cannot change later to ensure QoS.Once we
find a path, we commit to it.

→ Minimise the maximum congestion on all the edges, again to ensure QoS.We dont want the
edges to be overused more than its capacity.

7

The algorithm is an online algorithm and hence the requests arrive with time. We suggest three
candidate algorithms for this:

• We choose the shortest path to route the bandwidth, which can fail as it is an absolute shortest
path.So, we fix a source and sink and all the requests are continuously routed through the
same source to the same sink.

Consider the example in Figure 21.4, which has 1 path of length 1 and n indirect paths, of
length 2.So, we choose the shortest (direct) path. Suppose , 1st request is (s, t, 1), 2nd request
is (s, t, 1), and so on and the nth request is (s, t, 1) .So, all the requests are routed through
the same shortest path, and the congestion of the Shortest Path Algorithm = n.

Figure 21.4: Graph with single direct path and ’n’ indirect paths

But optimal congestion is 1 (by routing using the indirect paths of length 2).

• We will greedily pick a path which minimises the maximum congestion after that path is
chosen.One way to find this is to to throw out high congestion edges and find a new shortest
path in the remaining graph.

• The right approach is to give exponential weights to the edges,and then choose the shortest
path. We show the correctness of this approach in the next lecture.

So,for instance, we can set the edge to w(e) =
(
3
2

)current load(e)
, and then find the shortest

path.This is a soft form of maximum congestion(softmax objective), and a nice middle ground
between maximum congestion and length of path.

8

	Recap
	Solving the Online Fractional Algorithm and Online Rounding Scheme
	Online Fractional Algorithm
	Weak Duality

	Summary
	Analysis of Online Rounding Algorithm
	Lower Bound Example
	Online Routing

