
CS6841: Advanced Algorithms IIT Madras, Spring 2016
Lecture #3: Virtual Circuit Routing and Secretary Problem April 1, 2016
Lecturer: Ravishankar Krishnaswamy Scribe: Aditi Raghunathan

1 Virtual Circuit Routing.

1.1 Problem Definition.

Consider a network in which nodes are connected via links of fixed bandwidth (say 1Mbps).

Network Graph : The connectivity of the network can be represented as a graph G.. The nodes
of the network are the vertices (V) and the links in the network are represented by (directed) edges
betweeen the respective vertices (E).

The links between nodes can be represented in the form of edges in the graph. Requests arrive
one after the other over time in the form : (source, destination, 1Mbps). These requests have
to be served by alloting a path from source to destination that can be used by the requesting
application.

Objective : The objective is to minimise the amount of congestion/load that is seen on any link
of the network that is we want to ensure that no edge is overused too often. Formally, we want to
minimise maxe∈G load(e)

Online algorithm : Once we serve a request and allocate a path from source to destination,
we cannot change the path on seeing later requests. This can lead to packet drops and affects the
quality of service. Hence the decisison made on seeing a request cannot be changed later and this
routing algoritm has to be online. Hence we analyse the algorithms in terms of their competitive
ratio (CR). Competitive ratio in this case is maxe∈G load(e)due to algo

maxe∈G load(e)of optimal solution

Note - Higher bandwidth requests can be thought of as multiple requests and higher capacity links
can be thought of as multiple smaller capacity links in parallel between the same nodes. We stick
to the case where both are 1Mbps for simplicity. We refer to this as 1 unit.

We will now develop the algorithm by studying a series of toy solutions and understanding where
they fail.

1.2 Toy Solution 1.

For each request, send 1 unit on the shortest path from source to destination

The rationale is to increase the congestion in the smallest number of links. Consider this example
:

σ, the request sequence : {(s, t, 1), (s, t, 2) . . . (s, t, n)}
Above algorithm routes all n requests along the direct link s-t and this link has load/congestion -
n. The optimal algorithm routes each response along the different paths to achieve a load of 1 on
all links.

Hence the competitive ration = n. This is too high.

1

s t

n length 2 paths

1 length 1 path

Figure 3.1: Network Graph G

1.3 Toy Solution 2.

The idea is to make the paths weighted.

At time t, let load(e, t) denote the number of previously chosen paths (to serve the prevvious
requests) using edge e. For a new request, the algorithm finds the shortest path in the weighted
graph w(e) = load(e, t) + 1 – this is the final load if we were to route current request by a path
using edge e.

Consider the same example as above (Figure 3.1) with

σ, the request sequence : {(s, t, 1), (s, t, 2) . . . (s, t, n)}
We initialise all loads to 1.

1. Request 1 - w(indirect edge) = 2 each, w(direct) = 1 each

Shortest path : Direct path

2. Request 2 - w(indirect edge) = 1 each, w(direct) = 2

We break tie by choosing indirect path each time.

3. Request 3 - w(indirect edge if used) = 2 each, w(indirect edge not used) = 1, w(direct edge)
= 2

Once again, we need to break tie between a new indirect path and a direct path. We choose
a new indirect path.

If we follow the above scheme, we are doing well and we achieve a competitive ratio of 1. However
this is not the worst case for situation for this algorithm.

Consider the following example 2.

If the size of the input graph is n, then ` ≈
√
n

1. Request 1 : Use directed path
2

l length paths

l paths

s t

Figure 3.2: Network Graph G2

2. Request 2 : Directed path has weighted cost = 2, indirect paths have weighted cost = l
...

3. Request l − 1 : Use directed path

This algorithm causes a load of l on the direct path.

However the optimal algorithm will route each request along the l indirect paths and hence the
maximum congestion is 1.

Competitive ratio = ` ≈
√
n

The above example tells us that we need a different balance between the length of the path and
congestion incurred so far. This balance should be dictated by the objective that we are interested
in – which is to minimise the maximum load on any edge. Let’s try to improve the attempt
descriibed above.

1.4 Solution 3.

It seems that linear weights wasn’t penalizing congestion enough. We can try quadratic so that
w(e, t) = (load(e, t) + 1)2. To serve a request, we find the shortest weighted path from source to
destination.

We can construct a similar example (as in Figure 3.2), with ` indirect paths of length `2. Here

` ≈ n
1
3 . In this case, the competitive ratio = ` = n

1
3

By increasing the weights to be quadratic in load, we saw that the competitive ratio decreases.
In order to further get a gain in competitive ratio, a good algorithm assigns weights that are
exponential in the load.

1.5 Good Algorithm.

Promise : Assume that we know maximum load of the optimal solution for the requests which
are going to arrive. Let this value be λ?

1. At time t, let load(e, t) be the number of requests that have been routed previously, using
edge e.

3

2. Set the weights in the following way -

w(e, t) = (1 + ε)
load(e,t)+1

λ? − (1 + ε)
load(e,t)+1

λ?

3. For new request (st, dt, 1), route along the shortest path where edges have weight w(e, t).

4. Update the loads of the edges that use the routed path.

Theorem 3.1. For the above proposed algorithm, CR = O(logm), where m is the number of edges
in the graph G.

Proof. Since the maximum load of the optimal algorithm is λ?, to prove the theorem, by definition
of competitive ratio, it suffices to show that max load on any edge when the above algorithm routes
the requests is O(logm)λ?.

This proof uses a suitably defined potential function φ(t). By establishing properties of this po-
tential function when requests are served according to the algorithm, we can establish the required
bound on the maximum load on an edge.

Potential Function Definition :

φ(t) =
∑
e

(1 + ε)
load(e,t)
λ?

φ(0) = m, since all loads are 0.

Potential Function based proof :

Let pt+1 be the path that the algorithm chooses and p?t+1 be the path the optimal algorithm chooses.

to serve the request arriving at time t.

φ(t+ 1)− φ(t) =
∑

e∈Pt+1

[(1 + ε)
load(e,t)+1

λ? − (1 + ε)
load(e,t)
λ?

=
∑

e∈Pt+1

w(e, t) By definition of w(e, t)

≤
∑

e∈P ?t+1

w(e, t) By Step 3 of the algorithm

=
∑

e∈P ?t+1

(1 + ε)
load(e,t)
λ? [(1 + ε)

1
λ? − 1]

≈
∑

e∈P ?t+1

(1 + ε)
load(e,t)
λ? [1 +

ε

λ?
− 1]

=
∑

e∈P ?t+1

(1 + ε)
load(e,t)
λ?

ε

λ?

φ(t+ 1)− φ(t) ≤
∑

e∈P ?t+1

(1 + ε)
load(e,t)
λ?

ε

λ?

4

Suppose there are T requests. Summing the above equation over t = 0, 1, . . . T − 1, where the LHS
gets summed telescopically, we get

φ(T)− φ(0) ≤
T−1∑
t=0

∑
e∈P ?t+1

(1 + ε)
load(e,t)
λ?

ε

λ?

≤
∑
e

λ?
ε

λ?
(1 + ε)

load(e,t)
λ? Since maximum congestion of λ? in the optimal algorithm

means that each edge is present in some path maximum λ? times

≤ ε
∑
e

(1 + ε)
load(e,t)
λ?

≤ εφ(T) By defintion

(1− ε)φ(T) ≤ φ(0)

φ(T) ≤ m

1− ε

Set ε = 1
2 , we get ∑

e

(3

2

) load(e,t)
λ? ≤ 2m

Since all the terms being summed are positive, we get

∀e,
(3

2

) load(e,t)
λ? ≤ 2m

load(e, t)

λ?
log
(3

2

)
≤ log 2m

=⇒ load(e, t) ≤ O(logm)λ?

This completes the proof. Note that this potential function acts as a soft max function.

1.6 Getting around the promise.

The algorithm above used the knowledge of λ?, the maximum congestion of the optimal “offline”
algorithm for the sequence of requests. However, in practice we do not know this quantity. One
way to get around this is to use the algorithm’s performance to guess/estimate the value of λ?.
The idea is to start off with a guess for λ?. Whenever the algorithm’s guarantees fail to hold/are
vioalted, we double the value of λ? that we use for future requests.

Suppose the true value of λ? = 2i
?
. Let λ̂ be the guess. Between when λ̂ = 2k and when it’s set

to 2k+1, the maximum congestion caused by the algorithm Ck satisfies Ck = O(2k logm). Total

congestion =
i?∑

k=1

Ck = O(2i
?+1 logm) = O(logm)λ?.

In this way, we can employ the algorithm and it’s accompanying theoretical guarantees to estimate
the value of λ?, without hurting the performance aymptotically.

2 Online stochastic optimisation.

We study online stochastic optimisation by starting off with a toy example. This example studies
admission control and this has very general applications.

5

2.1 Problem Definition.

There are n people each having an underlying utility ∈ [0, 1]. These people arrive in an online fashion
and the algorithm has to decide which person to allocate resources too. Suppose the algorithm
decides to let go off a person without allocating, the algorithm cannot revoke it’s decision later.
Hence the algorithm works in an online setting. In concrete case, consider the secretary problem.
Here we interview applicants one-one and make a decision whether to accept or reject. Once an
applicant has been rejected, he can’t be called back. The interviewer can only analyse the quality
of applicants seen so far, but has no information about the future applicants.

Objective/Goal : The aim is to maximise utility. Since we are allocating the resource to only
one person, in other words, we want to maximise the probability of algorithm giving the resource
to the person with highest utility.

Observation : Suppose we have the fully online setting, no meaningful algorithm can obtain best
utility with non-trivial probability. For example, consider the following set of inputs.

ε,
√
ε, ε

1
3 . . . ε

1
l , 1 In the worst case, we can fool any algorithm by having a stream of inputs like

the above and placing the utlity 1 in a place after which the algorithm decides to make an accept
decision. In this case, we ensure that the algorithm never chooses the highest utility participant.

What saves us is the observation that nature is not worst case. The inputs that we end up seeing
are a combination of random and adversarial inputs. This is challenging from the point of view of
modeling this setup.

2.2 Our Model.

We allow the adversary to choose the n utility values. These are then revealed in a random order
(random permutation).

2.3 Toy algorithm 1.

Suppose we blindly decide to offer the resource to the kth input. The probability that the algorithm
picks the highest utility item is the probability that the highest utility item is at position k.

Since the perturbation is random, this probability is 1
n .

2.4 Good Algorithm.

The intuition behind this algorithm is to first learn something about the inputs by observing a
small number of samples.

Algorithm(k) description.

1. Just observe the first k− 1 utility values presented, and let u be the best utility among these
k − 1 inputs seen.

2. Offer the resource to the first person in {k, k + 1 . . . n} which is better than u.

Clearly, the performance of this algorithm depends on the value of k that is chosen.

As a simple case, we first study the analysis when k = n
2 .

The sure shot case of success for the algorithm in this case is when the second best appears in the
first half (which is oberved), and the best appears in the second half (and is picked because it’s the
only element that is greater than the second best).

6

The probability that this happens = 1
2 ×

1
2 = 1

4 . Therefore the success probability is atleast 1
4 .

Note that this is not a tight bound. Success cases also include the ones where the third best appears
in the first half, while the second best appears after the best; both in the second half and so on.

Optimal value of k.

To solve for the optimal value of k, the idea is to write the success probability as a function of
k and differentiate it to obtain the optimum. Note that having a very small k is not good – we
wouldn’t have seen enough and there is a high chance that a non-best item that appears early on
is greater than whatever is examined and hence chosen, in other words, we haven’t learnt enough.

Similarly, having a very large k is also undesirable. We spend a lot of time learning and don’t
exploit enough.

Given this tradeoff, we know that k lies somewhere in between and the value can be obtained by
differentiating.

Let Xn be a random variable that takes the index of the item with best utility after the random
permutation.

Pr[success of algorithm(k) | Xn = j] =

{
0 j < k
k−1
j−1 j ≥ k

The first case is easy to see. If Xn < k, that means when the best item is seen, we are still in the
learning stage. Clearly, the algorithm won’t pick this best element and fails.

Suppose Xn > k. We are sure that the best element appears somewhere in the testing/exploiting
phase. This is fixed. Conditioned on the position of the best element (or Xn), we can say that the
algorithm is successful if the second best element among the first Xn elements – also called “local”
second best element was present in training/learning phase.

If not, second best element being present before Xn means that this element is better than all those
elements present in the learning stage and is seen before Xn and is hence undesirably picked.

The probability that this “local second best” is present in the learning phase is equactly k−1
j−1 , since

it’s a uniform permutation.

Total success probability of algorithm (k) =

=
k−1∑
j=1

Pr[Xn = j]× 0 +
n∑

j=k

Pr[Xn = j]
k − 1

j − 1

=
k − 1

n

n∑
j=k

1

j − 1

=
k − 1

n
log

n

k
(This is a small approximation but is not too bad)

Let’s now optimise to get the value of k. Let f(x) denote the success probability of algorithm(k).

7

From above, we get f(k) ≈ k log n
k . Differentiating and equating to 0,

f ′(k) = 0 =⇒ log
n

k
+
k2

n
× −n

k2
= 0

=⇒ log
n

k
= 1

=⇒ n

k
= e

=⇒ k =
n

e

The probability that algo(k) succeedes for this k is approximately k
n = 1

e >>
1
4 .

2.5 Remarks.

We have described an algorithm that learns/estimates some input parameters on the fly.

In fact, this secretary problem described has a rich history and is a well studied problem. It
introduces the concept of semi online, semi stochastic model.

The success probability achieved, which is 1
e is the highest we can hope to get. A lower bound of 1

e
has been established for this problem. One of the proofs of optimality is via LP and duality which
we studied in the earlier section of this course.

8

	Virtual Circuit Routing.
	Problem Definition.
	Toy Solution 1.
	Toy Solution 2.
	Solution 3.
	Good Algorithm.
	Getting around the promise.

	Online stochastic optimisation.
	Problem Definition.
	Our Model.
	Toy algorithm 1.
	Good Algorithm.

