
CS6841: Advanced Algorithms IIT Madras, Spring 2016
Lecture #23: Sorting Networks and Expander Graph April 06, 2016
Lecturer: Rajsekar M Scribe: R.Vijayaragunathan

Batcher Sorting Networks using Recursive construction

Sorting networks are comparison networks that always sort their inputs, so it makes sense to begin
our discussion with comparison networks and their characteristics. A sorting network consists of
two types of items: comparators and wires. The wires are carrying values that traverse the network
all at the same time. Each comparator connects two wires. When a pair of values, traveling through
a pair of wires, encounter a comparator, the comparator swaps the values if and only if the top
wire’s value is greater than the bottom wire’s value.
Let say C be the comparator getting x and y as data from input wires. C outputs x′ and y′ where
x′ = min(x, y) and y′ = min(x, y).
Size. Total the number of comparators in the network.
Depth. the largest number of comparators that any input value can encounter on its way through
the network. An input wire of a sorting network has depth 0. Now, if a comparator has two input
wires with depths dx and dy, then its output wires have depth max(dx, dy)+1. There are no cycles
of comparators in a sorting network, the depth of a wire is well defined.

Batchers Sorting Network

We will describe a simple recursive non-adaptive sorting procedure, named Batchers Algorithm
after its discoverer.

The idea behind Batchers algorithm is the following claim. If you sort the first half of a list, and
sort the second half separately, and then sort the odd-indexed entries (1st, 3rd, · · · ) and the even
indexed entries (2nd, 4th, · · · ) separately, then you need make only one more comparison-switch per
pair of keys to completely sort the list.
given any list of length n, if we sort the entries in the first half, then sort the entries in the second
half, then sort the entries in odd positions, then sort the entries in even positions and lastly perform
this same round of exchanges (second with third, fourth with fifth, and sixth with seventh), the list
will end up sorted. Furthermore, and even more incredibly, the same fact holds for any list whose
length is a multiple of 4 (as we shall see below); in that case, in the final step, we sort the 2lth

element with the (2l+1)st for l = 1, 2 · · · (n/2)-1
Merger. Given two sorted sequences, if we reverse the order of the second sequence and th en
concatenate the two sequences, the resulting sequence is bitonic (in case of binary input, If a sorting
network sorts 01 inputs then it can solve for any number, called Zero−One principle).

Given the sorted zero-one sequences X and Y we reverse Y to get Y R. Concatenating X and Y R

yields a bitonic sequence. Thus, to merge the two input sequences X and Y , it suffices to perform
a bitonic sort on X concatenated with Y R.

Sorting network will be constructed from merging networks (A collection of comparison Gates ar-
ranged in certain fashion).

1



Lower bound on sorting network is given as;

• Each level of a sorting network can contain at most n
2 comparators

• Since the size of a sorting network is Ω(n log n) , the depth is Ω(logn)

• An elegant construction that achieves depth O(log2 n) and size O(n log2 n)

• Much more complicated constructions have been given that achieve depth O(log n) and size
O(n log n).

Procedure for Batcher’s Sorting Network is given as;

Sort(x1, x2, · · ·xn):

Sort(x1, · · ·xn
2
)

Sort(xn
2
+1, · · · , xn)

Merge(x1, x2, · · ·xn)

Merge(x1, x2, · · ·xn):

Merge(xi,∀i Odd)

Merge(xi,∀i Even)

For i = 2 to n− 1 step by 2 do

Compare(xi, xi+1)

in this procedure Compare is the a single comparison gate in sorting network.

Analysis

Let analyse the Batchers Sorting Network.

Let S(n) denote the the number of comparison needed to Sort n items, and M(n) denote the num-

ber of comparisons needed to merge two sorted list of size
n

2
each.

S(n) = 2S(n/2) +M(n),

M(n) = 2M(n/2) + n/2− 1

for n = 2, a single comparator gate is suffiecent to sort and merge. Hence M(2) = S(2) = 1.

M(n) ≤ n

2
log n = O(n log n)

S(n) ≤ n

2
(log n)2 = O(n(log n)2)

2



Expander Graphs

The set of vertices of a bipartite graph is partitioned into two disjoint parts in such a way that
each edge has one endpoint in each of the two parts; a matching is a set of pairwise disjoint edges;
for each subset S of the vertex-set of a graph G, we write

NG(S) = {u : u is adjacent to at least one vertex inS}

By a bipartite (n, d, µ)-expander, we shall mean a bipartite graph G such that,

(i) G has n vertices in each part.

(ii) the edge-set that is union of d matchings,

(iii) Every nonempty set S of vertices in one part of G has S

By an strong (2n, ε)-halver, we shall mean a comparator network on 2n wires with the output wires
collected in equally size blocks BL, BR so that, for every k = 1, 2, · · ·n.

(i) the network places at mostεk of its k smallest input keys into output block BR and

(ii) the network places at most εk of its k largest input keys into output block BL.

Theorem 23.1. For every positive ε there is a positive integer d such that, for every positive
integer n, there is a strong (2n, ε)-halver of depth d.

Proof.

Theorem 23.2. For every choice of positive εB, εF , and δ, there is a positive integer d such that,
for every choice of positive even integers a and f such that δa ≤ f ≤ a, there is an (a, f, εB, εF )-
separator of depth d.

3


