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Spectral Sparsification

1 Recall

2 Laplacian

The Laplacian Matrix of a weighted graph G = (V, E, w), w : E → R+,
Laplacian in quadratic form:

xTLx =
∑
e=(a,b)

(xa − xb)2wa,b

Adjancy matrix A:
a(i, j) = 1 iff (i,j) ∈ E.
Laplacian L = D - A where D is diagonal matrix of degrees.

3 Resistor networks

This is a physical model of a graph in which we treat every edge as a resistor. If the graph
is unweighted, assume that each resistor has resistance 1. If an edge e has weight we, give
the corresponding resistor resistance re = 1

we
. Because when the weight of an edge is very

small, the edge is barely there, so it should correspond to very high resistance.Having no
edge corresponds to having a resistor of infinite resistance. Letters a, b and c for the names
of vertices, v for voltages.
Ohms law:

V = IR

That is, the potential drop across a resistor (V ) is equal to the current flowing over the
resistor (I) times the resistance (R). To apply this in a graph, we will define for each edge
(a, b) the current flowing from u to a to be i(a, b). As this is a directed quantity, we define

i(b, a) = −i(a, b)

.
let v ∈ RV be a vector of potentials (voltages) at vertices. Given these potentials, we can
figure out how much current flows on each edge by the formula.

i(a, b) =
(v(a)− v(b))

ra,b
wa,b(v(a)− v(b))

That is, we adopt the convention that current flows from high voltage to low voltage. I write
this equation in matrix form. The one complication is that each edge comes up twice in i.
So, to treat i as a vector each edge show up exactly once as (a, b) when a ∈ b. define the



signed edge-vertex adjacency matrix of the graph U to be the matrix with rows indexed by
edges and columns indexed by vertices such that

U((a, b), c) =


1 if a=b

−1 if b=c

0 otherwise

write the row of U corresponding to edge (a, b) as δa − δb. W be the diagonal matrix
with rows and columns indexed by edges and the weights of edges on the diagonals.

i = WUv.

Let iext ∈ RV denote the external currents,where iext(a) is the amount of current entering
the graph through node a. We then have

iext(a) =
∑

b:(a,b)∈E

i(a, b)

in matrix form,

iext = UT i = UTWUv.

in matrix form

L = UTWU.

is the Laplacian

L =
∑

(u,v)∈E

wu,v(δu − δv)(δu − δv)T

the nodes a for which
iext(a) 6= 0

as being boundary nodes.

iext(a) = Lv

for the internal nodes.
If the graph is unweighted and a is an internal node, then the ath row of this equation is

0 = (δTa L)v =
∑

(a,b)∈E

(v(a)− v(b)) = d(a)v(a)−
∑

(a,b)∈E

v(b)
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i.e

v(a) =

∑
(a,b)∈E v(b)

d(a)

4 Effective resistance

Effective resistance of the whole network between a and b. Consider electrical flow that
sends one unit of current into node a and removes one unit of current from node b, measure
the potential difference between a and b that is required to realize this current, is said to be
effective resistance between a and b, notation Reff (a, b).

the potential difference between a and b in a flow of one unit of current from a to b :

Reff = v(a)− v(b) = (δa − δb)TL+(δa − δb)

5 Sparsification

1 : Sparsify a graph whil maintaining structure.
2 : Sample edge with probability ∝ 1

Reff
3 : For all graph G we’ll get approximation(This

will involved effective resistance) containing only O(n log(n)) edges. Approximation :: a
graph H to be an ε-approximation of a graph G if

(1− ε)LH 4 LG 4 (1 + ε)LH .

as graphs that approximate each other have a lot in common. For example, 1. the effec-
tive resistance between all pairs of vertices are similar in the two graphs, 2. the eigenvalues
of the graphs are similar, 3. the boundaries of all sets are similar, and 4. the solutions of
linear equations in the two matrices are similar.

6 Positive semi definite matrice(PSD)

1. A < 0⇐⇒ λi(A) ≥ 0 2 . Partial Ordering on matrices
A < B ⇐⇒ A−B < 0

3 . Spectral Sparsify :
(1− ε)LH 4 LG 4 (1 + ε)LH .

here G is our original graph.
4. A < 0 =⇒ AT =

∑
λT eie

T
i

Note that λi ≥ 0 are eigen values and ei are corresponind eigen vectors of A.
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7 Sparsifying Complete graphs

G = Kn what are the eigen values of complete graphs? λ(G) :
λ1 =1.
and any other eigen values are as λj = 1− 1

n−1 where n is very large number. LG1̄ = 0
Approximation : any sparse graph s.t λ1 =1 and λj ≥ 1− ε

A very good expander
Ramanujan Expander ≡ complete graph. LG denotes for laplacian for a graph G. S ⊆ V

xs(i) =

{
1 if i ∈S

0 otherwise

L = D - A

xTLx =
∑
e=(i,j)

(xs(i)− xi(j)2)wa,b

Refferences ::
Spectral Graph theory by Dan Spielman.
————————————————————
OutLine of the Algorithm::
————————————————————-
1. Input a graph G
If Rab denotes for effective resistance between (a,b)
2. Output will be a graph H and H will be a sparsifier with probability > 0.75.

3. qa,b = wa,b.Ra,b

4. pa,b = c(logn)
ε2

5. insert (a,b) with probability pa,b and wH(a, b) =
wa,b
pa,b

6. output graph H.Output graph still be a weighted graph
wH(a, b) = 1

pa,b
.

————————————————–
Our original Laplacian

LG =
∑
(a,b)

wa,bLa,b

LH =
∑
(a,b)

za,bLa,b

where
xTLGx =

∑
(a,b)

wa,bLa,b
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xTLGx =
∑
(a,b)

(xa − xb)2 =
∑

xTLa,bx

.

za,b =

{
wa,b
pa,b

with probability pa,b

0 otherwise

E[LH ] =
∑

a,bE[za,b]La,b = wa,bLa,b = LG ....(1)

NOTE: That
E[LH ] = LG ; LH 4 (1 + ε)LG

Now let’s look at sparsifying of H
we want to prove that

LH 4 (1 + ε)LG

L
−1
2
G LHL

−1
2
G 4 (1 + ε)

∏
where

∏
is the projection onto the range of LG. and L

−1
2
G denotes square root of of the

pseudo-inverse of LG
More formally :

Assume that LGisinvertible.

L
−1
2
G LH 4 (1 + ε)L

+1
2
G

L
−1
2
G LHL

−1
2
G 4 (1 + ε)I

Now Lets look at Expected number of edges =
∑
pa,b ≤

∑
( c∗log(n)

ε2
)qa,b

qa,bwa,b(δa − δb)TLG(δa − δb)

....(2)

Lemma 1. ∑
e=(a,b)

qa,b =
∑
a,b

wa,b(δa − δb)TL−1G (δa − δb) = Tr(
∏

) = n− 1

Expected number of edges ≤ c∗nlog(n)
ε2

applying Chernoff Bound =⇒ Pr[numberofedges>10∗c∗n∗log(n)
ε

] ≤ 0.0001 call this ex-
pression sparsify.
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Defining

Xa,b =

{
wa,b
pa,b

L
−1
2
G La,bLG with probability pa,b

0 otherwise

E[
∑

Xa,b] = L
−1
2
G E[LH ]L

−1
2
G =

∏
LH =

∑
Ya,b

where

Ya,b =

{
wa,b
pa,b

La,bLG with probability pa,b

0 otherwise

Xa,b = L
−1
2
G Y L

−1
2
G

Theorem 2. (Joel A Tropp) Let X1, X2, X3, .....Xm are matrices of order n and independent
s.t Xi < 0 random variables. Suppose it satisfy ||Xi||<R
Define X =

∑n
i=1 So E[X] =

∑n
i=1E[Xi] then

Pr[λmin(X) ≤ (1− ε)µmin]<small

Pr[λmax(X) ≥ (1 + ε)µmax]<small

where small ≡ ne
−ε2µmax

R
−ε2

Lemma 3.

||Xa,b|| ≤ tr(Xa,b) ≤
ε2

c ∗ log(n)

where ||Xa,b| dentes spectral norm of the matrix.
Analysis: ∑

a,b

E[Xa,b] =
∏

||Xa,b| ≤
ε2

c ∗ log(n)
= R

Pr[
∑
a,b

Xa,b ≥ (1 + ε)
∏

] ≤ n ∗ e−c∗log(n) ≤ 1

n2

for some c >10
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